
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

June 30, 2020

Abstract

These notes aim to give a gentle introduction to some important topics in con-
tinuous optimization. The focus is on methods that arise in machine learning and
modern data analysis, highlighting concerns about complexity, robustness, and
implementation in these domains.

Each section in these notes roughly corresponds to an 80 minutes lecture, adding
up to one semester course. Numerous available ipython notebooks augment the
theoretical developments, linked to from the text and available on this web page:

https://ee227c.github.io/.
These notes came out of the course EE227C: Convex Optimization and Approxima-

tion, taught at UC Berkeley in Spring, 2018.

1

https://ee227c.github.io/

Contents

I Gradient methods 7

1 Convexity 7
1.1 Convex sets . 7
1.2 Convex functions . 9
1.3 Convex optimization . 12

2 Gradient method 13
2.1 Gradient descent . 14
2.2 Lipschitz functions . 15
2.3 Smooth functions . 16

3 Strong convexity 19
3.1 Reminders . 19
3.2 Strong convexity . 20
3.3 Convergence rate strongly convex functions 21
3.4 Convergence rate for smooth and strongly convex functions 23

4 Some applications of gradient methods 24

5 Conditional gradient method 25
5.1 The algorithm . 25
5.2 Conditional gradient convergence analysis 25
5.3 Application to nuclear norm optimization problems 27

II Accelerated gradient methods 29

6 Discovering acceleration 29
6.1 Quadratics . 29
6.2 Gradient descent on a quadratic . 30
6.3 Connection to polynomial approximation 32
6.4 Chebyshev polynomials . 32

7 Krylov subspaces, eigenvalues, and conjugate gradient 37
7.1 Krylov subspaces . 37
7.2 Finding eigenvectors . 38
7.3 Applying Chebyshev polynomials . 40
7.4 Conjugate gradient method . 40

2

8 Nesterov’s accelerated gradient descent 42
8.1 Convergence analysis . 43
8.2 Strongly convex case . 44

9 Lower bounds and trade-offs with robustness 45
9.1 Lower bounds . 46
9.2 Robustness and acceleration trade-offs . 50

III Stochastic optimization 53

10 Stochastic optimization 53
10.1 The stochastic gradient method . 53
10.2 The Perceptron . 54
10.3 Empirical risk minimization . 55
10.4 Online learning . 55
10.5 Multiplicative weights update . 56

11 Learning, stability, regularization 58
11.1 Empirical risk and generalization error . 58
11.2 Algorithmic stability . 59
11.3 Stability of empirical risk minimization 60
11.4 Regularization . 61
11.5 Implicit regularization . 62

12 Coordinate descent 62
12.1 Coordinate descent . 63
12.2 Importance sampling . 64
12.3 Importance sampling for smooth coordinate descent 65
12.4 Random coordinate vs. stochastic gradient descent 67
12.5 Other extensions to coordinate descent . 68

IV Dual methods 69

13 Duality theory 69
13.1 Optimality conditions for equality constrained optimization 69
13.2 Nonlinear constraints . 70
13.3 Duality . 72
13.4 Weak duality . 73
13.5 Strong duality . 73

3

14 Algorithms using duality 74
14.1 Review . 74
14.2 Dual gradient ascent . 75
14.3 Augmented Lagrangian method / method of multipliers 75
14.4 Dual decomposition . 76
14.5 ADMM — Alternating direction method of multipliers 78

15 Fenchel duality and algorithms 80
15.1 Deriving the dual problem for empirical risk minimization 82
15.2 Stochastic dual coordinate ascent (SDCA) 83

16 Backpropagation and adjoints 85
16.1 Warming up . 85
16.2 General formulation . 86
16.3 Connection to chain rule . 87
16.4 Working out an example . 88

V Non-convex problems 90

17 Non-convex problems 90
17.1 Local minima . 90
17.2 Stationary points . 92
17.3 Saddle points . 94

18 Escaping saddle points 95
18.1 Dynamical systems perspective . 95
18.2 The case of quadratics . 96
18.3 The general case . 97

19 Alternating minimization and EM 98

20 Derivative-free optimization, policy gradient, controls 98

21 Non-convex constraints I 98
21.1 Hardness . 99
21.2 Convex relaxation . 100

VI Higher-order and interior point methods 105

22 Newton’s method 105
22.1 Damped update . 107
22.2 Quasi-Newton methods . 108

4

23 Experimenting with second-order methods 109

24 Enter interior point methods 109
24.1 Barrier methods . 109
24.2 Linear programming . 111

25 Primal-dual interior point methods 114
25.1 Deriving the dual problem . 114
25.2 Primal-dual iterates along the central path 116
25.3 Generating Iterates with the Newton Step 117

5

Acknowledgments

These notes build on an earlier course by Ben Recht, as well as an upcoming textbook
by Recht and Wright. Some chapters also closely follow Bubeck’s excellent mono-
graph [Bub15]. Special thanks to Max Simchowitz, the graduate instructor for the
course. Ludwig Schmidt gave two superb guest lectures in the class that I am grateful
for.

Many thanks to the students of EE227C for their generous help in creating these
lecture notes. Below is a (partial) list of contributors.

Lecture 2: Michael Cheng, Neil Thomas, Morris Yau

Lecture 3: Charles Frye

Lecture 5: Victoria Cheng, Kun Qian, Zeshi Zheng

Lecture 6: Adam Gleave, Andy Deng, Mathilde Badoual

Lecture 7: Eugene Vinitsky

Lecture 8: Aurelien Bibaut, Zhi Chen, Michael Zhang

Lecture 9: John Miller, Vlad Feinburg

Lecture 12: Erin Grant

Lecture 14: Feynman Liang

Lecture 15: Lydia Liu, Tijana Zrnic

Lecture 17: Adam Villaflor

Lecture 18: Yu Sun

Lecture 21: Smitha Milli, Karl Krauth

Lecture 22: Mehran Mirramezani and Serena Yuan

Lecture 23: Soroush Nasiriany, Armin Askari

lecture 25: Chen Tang, Liting Sun, Xinlei Pan

6

Part I

Gradient methods
Gradient descent is one of the most broadly applied techniques for minimizing functions,
both convex and nonconvex alike. At its core, it is a form of local search, greedily
optimizating a function in a small region over many successive iterations. If f : R→ R

is twice-continuously differentiable, then Taylor’s theorem tells us that that

f (x + δ) ≈ f (x) + δ f ′(x) +
1
2

δ2 f ′′(x) .

This approximation directly reveals that if we move from x to x + δ where δ = −η · f ′(x)
for sufficiently small η > 0, we generally expect to decrease the function value by about
η f ′(x)2. The simple greedy way of decreasing the function value is known as gradient
descent, and it generalizes to idea to functions of many variables with the help of
multivariate versions of Taylor’s theorem.

Gradient descent converges to points at which the first derivatives vanish. For the
broad class of convex functions, such points turn out to be globally minimal. Moreover,
gradient descent can be ammended for convex functions which are not even differen-
tiable. Later on, we will see that gradient descent can be shown to converge to locally
(and, on occasion, globally!) minimal points as well.

In this part of the text, we begin in Section 1 by introducing the preliminaries
about convex functions which make them so ammenable to gradient descent. Crucially,
we also introduce the notion of the subgradient, generalizes the gradient to possibly
non-convex function. In Section 2, we formally introduce (sub-)gradient descent, and
prove explicit convergence rates when gradient descent is applied to convex functions.
Section 3 introduces a stronger assumption know as strong convexity, which allows
(sub-)gradient descent to enjoy even faster rates. [Max’s Note: finish]

1 Convexity

This lecture provides the most important facts about convex sets and convex functions
that we’ll heavily make use of. When f is sufficiently smooth, these are often simple
consequences of Taylor’s theorem.

1.1 Convex sets

Definition 1.1 (Convex set). A set K ⊆ Rn is convex if it the line segment between any
two points in K is also contained in K. Formally, for all x, y ∈ K and all scalars γ ∈ [0, 1]
we have γx + (1− γ)y ∈ K.

7

Theorem 1.2 (Separation Theorem). Let C, K ⊆ Rn be convex sets with empty intersection
C ∩ K = ∅. Then there exists a point a ∈ Rn and a number b ∈ R such that

1. for all x ∈ C, we have 〈a, x〉 > b.

2. for all x ∈ K, we have 〈a, x〉 6 b.

If C and K are closed and at least one of them is bounded, then we can replace the inequalities by
strict inequalities.

The case we’re most concerned with is when both sets are compact (i.e., closed and
bounded). We highlight its proof here.

Proof of Theorem 1.2 for compact sets. In this case, the Cartesian product C × K is also
compact. Therefore, the distance function ‖x − y‖ attains its minimum over C × K.
Taking p, q to be two points that achieve the minimum. A separating hyperplane is given
by the hyperplane perpendicular to q− p that passes through the midpoint between
p and q. That is, a = q− p and b = (〈a, q〉 − 〈a, p〉)/2. For the sake of contradiction,
suppose there is a point r on this hyperplane contained in one of the two sets, say, C.
Then the line segment from p to r is also contained in C by convexity. We can then
find a point along the line segment that is close to q than p is, thus contradicting our
assumption. �

1.1.1 Notable convex sets

• Linear spaces {x ∈ Rn | Ax = 0} and halfspaces {x ∈ Rn | 〈a, x〉 > 0}

• Affine transformations of convex sets. If K ⊆ Rn is convex, so is {Ax + b | x ∈ K}
for any A ∈ Rm×n and b ∈ Rm. In particular, affine subspaces and affine halfspaces
are convex.

• Intersections of convex sets. In fact, every convex set is equivalent to the inter-
section of all affine halfspaces that contain it (a consequence of the separating
hyperplane theorem).

• The cone of positive semidefinite matrices, denotes, Sn
+ = {A ∈ Rn×n | A � 0}.

Here we write A � 0 to indicate that x>Ax > 0 for all x ∈ Rn. The fact that Sn
+

is convex can be verified directly from the definition, but it also follows from
what we already knew. Indeed, denoting by Sn = {A ∈ Rn×n | A> = A} the set
of all n× n symmetric matrices, we can write Sn

+ as an (infinite) intersection of
halfspaces Sn

+ =
⋂

x∈Rn\{0}{A ∈ Sn | x>Ax > 0}.

• See Boyd-Vandenberghe for lots of other examples.

8

2 1 0 1 20.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 Epigraph of a convex function

1.2 Convex functions

Definition 1.3 (Convex function). A function f : Ω→ R is convex if for all x, y ∈ Ω and
all scalars γ ∈ [0, 1] we have f (γx + (1− γ)y) 6 γ f (x) + (1− γ) f (y).

Jensen (1905) showed that for continuous functions, convexity follows from the
“midpoint” condition that for all x, y ∈ Ω,

f
(

x + y
2

)
6

f (x) + f (y)
2

.

This result sometimes simplifies the proof that a function is convex in cases where we
already know that it’s continuous.

Definition 1.4. The epigraph of a function f : Ω→ R is defined as

epi(f) = {(x, t) | f (x) 6 t} .

Fact 1.5. A function is convex if and only if its epigraph is convex.

Convex functions enjoy the property that local minima are also global minima.
Indeed, suppose that x ∈ Ω is a local minimum of f : Ω→ R meaning that any point in
a neighborhood around x has larger function value. Now, for every y ∈ Ω, we can find
a small enough γ such that

f (x) 6 f ((1− γ)x + γy) 6 (1− γ) f (x) + γ f (y) .

Therefore, f (x) 6 f (y) and so x must be a global minimum.

9

1.2.1 First-order characterization

It is helpful to relate convexity to Taylor’s theorem, which we recall now. We define
the gradient of a differentiable function f : Ω → R at x ∈ Ω as the vector of partial
derivatives

∇ f (x) =
(

∂ f
∂xi

)n

i=1
.

We note the following simple fact that relates linear forms of the gradient to a one-
dimensional derivative evaluated at 0. It’s a consequence of the multivariate chain
rule.

Fact 1.6. Assume f : Ω→ R is differentiable and let x, y ∈ Ω. Then,

∇ f (x)>y =
∂ f (x + γy)

∂γ

∣∣∣∣
γ=0

.

Taylor’s theorem implies the following statement.

Proposition 1.7. Assume f : Ω → R is continuously differentiable along the line segment
between two points x and y. Then,

f (y) = f (x) +∇ f (x)>(y− x) +
∫ 1

0
(1− γ)

∂2 f (x + γ(y− x))
∂γ2 dγ

Proof. Apply a second order Taylor’s expansion to g(γ) = f (x + γ(y− x)) and apply
Fact 1.6 to the first-order term. �

Among differentiable functions, convexity is equivalent to the property that the
first-order Taylor approximation provides a global lower bound on the function.

Proposition 1.8. Assume f : Ω→ R is differentiable. Then, f is convex if and only if for all
x, y ∈ Ω we have

f (y) > f (x) +∇ f (x)>(y− x) . (1)

Proof. First, suppose f is convex, then by definition

f (y) >
f ((1− γ)x + γy)− (1− γ) f (x)

γ

> f (x) +
f (x + γ(y− x))− f (x)

γ

→ f (x) +∇ f (x)>(y− x) as γ→ 0 (by Fact 1.6.)

On the other hand, fix two points x, y ∈ Ω and γ ∈ [0, 1]. Putting z = γx + (1− γ)y we
get from applying Equation 1 twice,

f (x) > f (z) +∇ f (z)>(x− z) and f (y) > f (z) +∇ f (z)>(y− z)

Adding these inequalities scaled by γ and (1− γ), respectively, we get γ f (x) + (1−
γ) f (y) > f (z), which establishes convexity. �

10

2 1 0 1 2

2

1

0

1

2

3

4
First-order Taylor approximation

Figure 1: Taylor approximation of f (x) = x2 at 0.5.

A direct consequence of Proposition 1.8 is that if ∇ f (x) = 0 vanishes at a point x,
then x must be a global minimizer of f .

Remark 1.9 (Subgradients). Of course, not all convex functions are differentiable. The absolute
value f (x) = |x|, for example, is convex but not differentiable at 0. Nonetheless, for every x, we
can find a vector g such that

f (y) > f (x) + g>(y− x) .

Such a vector is called a subgradient of f at x. The existence of subgradients is often sufficient
for optimization.

1.2.2 Second-order characterization

We define the Hessian matrix of f : Ω → R at a point x ∈ Ω as the matrix of second
order partial derivatives:

∇2 f (x) =

(
∂2 f

∂xi∂xj

)
i,j∈[n]

.

Schwarz’s theorem implies that the Hessian at a point x is symmetric provided that f
has continuous second partial derivatives in an open set around x.

In analogy with Fact 1.6, we can relate quadratic forms in the Hessian matrix to
one-dimensional derivatives using the chain rule.

11

Fact 1.10. Assume that f : Ω → R is twice differentiable along the line segment from x to y.
Then,

y>∇2 f (x + γy)y =
∂2 f (x + γy)

∂γ2 .

Proposition 1.11. If f is twice continuously differentiable on its domain Ω, then f is convex if
and only if ∇2 f (x) � 0 for all x ∈ Ω.

Proof. Suppose f is convex and our goal is to show that the Hessian is positive semidef-
inite. Let y = x + αu for some arbitrary vector u and scalar α. Proposition 1.8 shows

f (y)− f (x)−∇ f (x)>(y− x) > 0

Hence, by Proposition 1.7,

0 6
∫ 1

0
(1− γ)

∂2 f (x + γ(y− x))
∂γ2 dγ

= (1− γ)
∂2 f (x + γ(y− x))

∂γ2 for some γ ∈ (0, 1) (by the mean value theorem)

= (1− γ)(y− x)>∇2 f (x + γ(y− x))(y− x) . (by Fact 1.10)

Plugging in our choice of y, this shows 0 6 u>∇2 f (x + αγu)u. Letting α tend to zero
establishes that∇2 f (x) � 0. (Note that γ generally depends on α but is always bounded
by 1.)

Now, suppose the Hessian is positive semidefinite everywhere in Ω and our goal is
to show that the function f is convex. Using the same derivation as above, we can see
that the second-order error term in Taylor’s theorem must be non-negative. Hence, the
first-order approximation is a global lower bound and so the function f is convex by
Proposition 1.8. �

1.3 Convex optimization

Much of this course will be about different ways of minimizing a convex function f : Ω→
R over a convex domain Ω :

min
x∈Ω

f (x)

Convex optimization is not necessarily easy! For starters, convex sets do not necessarily
enjoy compact descriptions. When solving computational problems involving convex
sets, we need to worry about how to represent the convex set we’re dealing with. Rather
than asking for an explicit description of the set, we can instead require a computational
abstraction that highlights essential operations that we can carry out. The Separation
Theorem motivates an important computational abstraction called separation oracle.

Definition 1.12. A separation oracle for a convex set K is a device, which given any point
x 6∈ K returns a hyperplane separating x from K.

12

Another computational abstraction is a first-order oracle that given a point x ∈ Ω
returns the gradient ∇ f (x). Similarly, a second-order oracle returns ∇2 f (x). A function
value oracle or zeroth-order oracle only returns f (x). First-order methods are algorithms
that make do with a first-order oracle. Analogously, we can define zeroth-order method,
and second-order method.

1.3.1 What is efficient?

Classical complexity theory typically quantifies the resource consumption (primarily
running time or memory) of an algorithm in terms of the bit complexity of the input.
We say things like “we can multiply two n-bit numbers in time O(n2) using long
multiplication method.”

This computational approach can be cumbersome in convex optimization and most
textbooks shy away from it. Instead, it’s customary in optimization to quantify the cost
of the algorithm in terms of more abstract resources, like, how often it accesses one of
the oracles we mentioned. Counting oracle can give us a rough sense of how well we
expect a method to work.

The definition of “efficient” is not completely cut and dry in optimization. Typically,
our goal is to show that an algorithm finds a solution x with

f (x) 6 min
x∈Ω

f (x) + ε

for some additive error ε > 0. The cost of the algorithm will depend on the target
error. Highly practical algorithms often have a polynomial dependence on ε, such as
O(1/ε) or even O(1/ε2). Other algorithms achieve O(log(1/ε)) steps in theory, but are
prohibitive in their actual computational cost. Technically, if we think of the parameter ε

as being part of the input, it takes only O(log(1/ε)) bits to describe the error parameter.
Therefore, an algorithm that depends more than logarithmically on 1/ε may not be
polynomial time algorithm in its input size.

In this course, we will make an attempt to highlight both the theoretical performance
and practical appeal of an algorithm. Moreover, we will discuss other performance
criteria such as robustness to noise. How well an algorithm performs is rarely decided
by a single criterion, and usually depends on the application at hand.

2 Gradient method

In this lecture we encounter the fundamentally important gradient method and a few
ways to analyze its convergence behavior. The goal here is to solve a problem of the
form

min
x∈Ω

f (x) .

13

To solve this problem, we will need to make some assumptions on both the objective func-
tion f : Ω→ R and the constraint set Ω. In case Ω = Rn, we speak of an unconstrained
optimization problem.

The proofs closely follow the corresponding chapter in Bubeck’s text [Bub15].

2.1 Gradient descent

For a differentiable function f , the basic gradient method starting from an initial point x1
is defined by the iterative update rule

xt+1 = xt − ηt∇ f (xt) , t = 1, 2, . . .

where the scalar ηt is the so-called step size, sometimes called learning rate, that may vary
with t. There are numerous ways of choosing step sizes that have a significant effect on
the performance of gradient descent. What we will see in this lecture are several choices
of step sizes that ensure the convergence of gradient descent by virtue of a theorem.
These step sizes are not necessarily ideal for practical applications.

2.1.1 Projections

In cases where the constraint set Ω is not all of Rn, the gradient update can take us
outside the domain Ω. How can we ensure that xt+1 ∈ Ω? One natural approach is to
“project” each iterate back onto the domain Ω. As it turns out, this won’t really make
our analysis more difficult and so we include from the get-go.

Definition 2.1 (Projection). The projection of a point x onto a set Ω is defined as

ΠΩ(x) = arg min
y∈Ω
‖x− y‖2 .

Example 2.2. A projection onto the Euclidean ball B2 is just normalization:

ΠB2(x) =
x
‖x‖

A crucial property of projections is that when x ∈ Ω, we have for any y (possibly
outside Ω):

‖ΠΩ(y)− x‖2 6 ‖y− x‖2

That is, the projection of y onto a convex set containing x is closer to x. In fact, a stronger
claim is true that follows from the Pythagorean theorem.

Lemma 2.3.
‖ΠΩ(y)− x‖2 6 ‖y− x‖2 − ‖y−ΠΩ(y)‖2

So, now we can modify our original procedure as displayed in Figure 2.
And we are guaranteed that xt+1 ∈ Ω. Note that computing the projection may be

computationally the hardest part of the problem. However, there are convex sets for
which we know explicitly how to compute the projection (see Example 2.2). We will see
several other non-trivial examples in later lectures.

14

Starting from x1 ∈ Ω, repeat:

yt+1 = xt − η∇ f (xt) (gradient step)
xt+1 = ΠΩ(yt+1) (projection)

Figure 2: Projected gradient descent

2.2 Lipschitz functions

The first assumption that leads to a convergence analysis is that the gradients of the
objective function aren’t too big over the domain. This turns out to follow from a natural
Lipschitz continuity assumption.

Definition 2.4 (L-Lipschitz). A function f : Ω → R is L-Lipschitz if for every x, y ∈ Ω,
we have

| f (x)− f (y)| 6 L‖x− y‖

Fact 2.5. If the function f is L-Lipschitz, differentiable, and convex, then

‖∇ f (x)‖ 6 L .

We can now prove our first convergence rate for gradient descent.

Theorem 2.6. Assume that function f is convex, differentiable, and L-Lipschitz over the convex
domain Ω. Let R be the upper bound on the distance ‖x1 − x∗‖2 from the initial point x1 to an
optimal point x∗ ∈ arg minx∈Ω f (x). Let x1, . . . , xt be the sequence of iterates computed by t
steps of projected gradient descent with constant step size η = R

L
√

t
. Then,

f

(
1
t

t

∑
s=1

xs

)
− f (x∗) 6

RL√
t

.

This means that the difference between the functional value of the average point
during the optimization process from the optimal value is bounded above by a constant
proportional to 1√

t
.

Before proving the theorem, recall the “Fundamental Theorem of Optimization”,
which is that an inner product can be written as a sum of norms:

u>v =
1
2
(‖u‖2 + ‖v‖2−‖u− v‖2) (2)

This property follows from the more familiar identity ‖u− v‖2 = ‖u‖2 + ‖v‖2−2u>v.

15

Proof of Theorem 2.6. The proof begins by first bounding the difference in function values
f (xs)− f (x∗).

f (xs)− f (x∗) 6 ∇ f (xs)
>(xs − x∗) (by convexity)

=
1
η
(xs − ys+1)

>(xs − x∗) (by the update rule)

=
1

2η

(
‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2

)
(by Equation 2)

=
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+

η

2
‖∇ f (xs)‖2

(by the update rule)

6
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+

ηL2

2
(Lipschitz condition)

6
1

2η

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
+

ηL2

2
(Lemma 2.3)

Now, sum these differences from s = 1 to s = t:

t

∑
s=1

f (xs)− f (x∗) 6
1

2η

t

∑
s=1

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
+

ηL2t
2

=
1

2η

(
‖x1 − x∗‖2 − ‖xt − x∗‖2

)
+

ηL2t
2

(telescoping sum)

6
1

2η
‖x1 − x∗‖2 +

ηL2t
2

(since ‖xt − x∗‖ > 0)

6
R2

2η
+

ηL2t
2

(since ‖x1 − x∗‖ 6 R)

Finally,

f

(
1
t

t

∑
s=1

xs

)
− f (x∗) 6

1
t

t

∑
s=1

f (xs)− f (x∗) (by convexity)

6
R2

2ηt
+

ηL2

2
(inequality above)

=
RL√

t
(for η = R/L

√
t.)

�

2.3 Smooth functions

The next property we’ll encounter is called smoothness. The main point about smoothness
is that it allows us to control the second-order term in the Taylor approximation. This

16

often leads to stronger convergence guarantees at the expense of a relatively strong
assumption.

Definition 2.7 (Smoothness). A continuously differentiable function f is β smooth if the
gradient gradient map ∇ f : Rn → Rn is β-Lipschitz, i.e,

‖∇ f (x)−∇ f (y)‖ 6 β‖x− y‖ .

We will need a couple of technical lemmas before we can analyze gradient descent
for smooth functions. It’s safe to skip the proof of these technical lemmas on a first read.

Lemma 2.8. Let f be a β-smooth function on Rn. Then, for every x, y ∈ Rn,∣∣∣ f (y)− f (x)−∇ f (x)>(y− x)
∣∣∣ 6 β

2
‖y− x‖2 .

Proof. Express f (x)− f (y) as an integral, then apply Cauchy-Schwarz and β-smoothness
as follows:

| f (y)− f (x)−∇ f (x)>(y− x)| =

∣∣∣∣∣∣
1∫

0

∇ f (x + t(y− x))>(y− x)dt−∇ f (x)>(y− x)

∣∣∣∣∣∣
6

1∫
0

‖∇ f (x + t(y− x))−∇ f (x)‖ · ‖y− x‖dt

6

1∫
0

βt‖y− x‖2dt

=
β

2
‖y− x‖2 �

The significance of this lemma is that we can choose y = x− 1
β∇ f (x) and get that

f (y)− f (x) 6 − 1
2β
‖∇ f (x)‖2 .

This means that the gradient update decreases the function value by an amount propor-
tional to the squared norm of the gradient.

We also need the following lemma.

Lemma 2.9. Let f be a β-smooth convex function, then for every x, y ∈ Rn, we have

f (x)− f (y) 6 ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)−∇ f (y)‖2 .

17

Proof. Let z = y− 1
β (∇ f (y)−∇ f (x)). Then,

f (x)− f (y) = f (x)− f (z) + f (z)− f (y)

6 ∇ f (x)>(x− z) +∇ f (y)>(z− y) +
β

2
‖z− y‖2

= ∇ f (x)>(x− y) + (∇ f (x)−∇ f (y))>(y− z) +
1

2β
‖∇ f (x)−∇ f (y)‖2

= ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)−∇ f (y)‖2

Here, the inequality follows from convexity and smoothness. �

We will show that gradient descent with the update rule

xt+1 = xt − η∇ f (xt)

attains a faster rate of convergence under the smoothness condition.

Theorem 2.10. Let f be convex and β-smooth on Rn then gradient descent with η = 1
β satisfies

f (xt)− f (x∗) 6
2β‖x1 − x∗‖2

t− 1

To prove this we will need the following two lemmas.

Proof. By the update rule and Lemma 2.8 we have

f (xs+1)− f (xs) 6 −
1

2β
‖∇ f (xs)‖2

In particular, denoting δs = f (xs)− f (x∗) this shows

δs+1 6 δs −
1

2β
‖∇ f (xs)‖2

One also has by convexity

δs 6 ∇ f (x)s)>(xs − x∗) 6 ‖xs − x∗‖ · ‖∇ f (xs)‖

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two above displays
will imply

δs+1 6 δs −
1

2β‖x1 − x∗‖2 δ2
s

We solve the recurrence as follows. Let w = 1
2β‖x1−x∗‖2 , then

wδ2
s + δs+1 6 δs ⇐⇒ w

δs

δs+1
+

1
δs
6

1
δs+1

=⇒ 1
δs+1

− 1
δs
> w =⇒ 1

δt
> w(t− 1)

18

To finish the proof it remains to show that ‖xs − x∗‖ is decreasing with s. Using
Lemma 2.9, we get

(∇ f (x)−∇ f (y))>(x− y) >
1
β
‖∇ f (x)−∇ f (y)‖2 .

We use this and the fact that ∇ f (x∗) = 0, to show

‖xs+1 − x∗‖2 = ‖xs −
1
β
∇ f (xs)− x∗‖2

= ‖xs − x∗‖2 − 2
β
∇ f (xs)

>(xs − x∗) +
1
β2‖∇ f (xs)‖2

6 ‖xs − x∗‖2 − 1
β2‖∇ f (xs)‖2

6 ‖xs − x∗‖2 .

�

3 Strong convexity

This lecture introduces the notion of strong convexity and combines it with smoothness
to develop the concept of condition number. While smoothness gave as an upper bound
on the second-order term in Taylor’s approximation, strong convexity will give us a
lower bound. Taking together, these two assumptions are quite powerful as they lead
to a much faster convergence rate of the form exp(−Ω(t)). In words, gradient descent
on smooth and strongly convex functions decreases the error multiplicatively by some
factor strictly less than 1 in each iteration.

The technical part follows the corresponding chapter in Bubeck’s text [Bub15].

3.1 Reminders

Recall that we had (at least) two definitions apiece for convexity and smoothness: a gen-
eral definition for all functions and a more compact definition for (twice-)differentiable
functions.

A function f is convex if, for each input, there exists a globally valid linear lower
bound on the function: f (y) > f (x) + g>(x)(y− x). For differentiable functions, the
role of g is played by the gradient.

A function f is β-smooth if, for each input, there exists a globally valid quadratic
upper bound on the function, with (finite) quadratic parameter β: f (y) 6 f (x) +
g>(x)(y − x) + β

2 ‖x− y‖2. More poetically, a smooth, convex function is “trapped
between a parabola and a line”. Since β is covariant with affine transformations, e.g.

19

changes of units of measurement, we will frequently refer to a β-smooth function as
simply smooth.

For twice-differentiable functions, these properties admit simple conditions for
smoothness in terms of the Hessian, or matrix of second partial derivatives. A D2

function f is convex if ∇2 f (x) � 0 and it is β-smooth if ∇2 f (x) � βI.
We furthermore defined the notion of L-Lipschitzness. A function f is L-Lipschitz

if the amount that it “stretches” its inputs is bounded by L: | f (x)− f (y)| 6 L ‖x− y‖.
Note that for differentiable functions, β-smoothness is equivalent to β-Lipschitzness of
the gradient.

3.2 Strong convexity

With these three concepts, we were able to prove two error decay rates for gradient
descent (and its projective, stochastic, and subgradient flavors). However, these rates
were substantially slower than what’s observed in certain settings in practice.

Noting the asymmetry between our linear lower bound (from convexity) and our
quadratic upper bound (from smoothness) we introduce a new, more restricted function
class by upgrading our lower bound to second order.

Definition 3.1 (Strong convexity). A function f : Ω → R is α-strongly convex if, for all
x, y ∈ Ω, the following inequality holds for some α > 0:

f (y) > f (x) + g(x)>(y− x) +
α

2
‖x− y‖2

As with smoothness, we will often shorten “α-strongly convex” to “strongly con-
vex”. A strongly convex, smooth function is one that can be “squeezed between two
parabolas”. If β-smoothness is a good thing, then α-convexity guarantees we don’t have
too much of a good thing.

A twice differentiable function is α-strongly convex if ∇2 f (x) � αI.
Once again, note that the parameter α changes under affine transformations. Con-

veniently enough, for α-strongly convex, β-smooth functions, we can define a basis-
independent quantity called the condition number.

Definition 3.2 (Condition Number). An α-strongly convex, β-smooth function f has
condition number β

α .

For a positive-definite quadratic function f , this definition of the condition number
corresponds with the perhaps more familiar definition of the condition number of the
matrix defining the quadratic.

A look back and ahead. The following table summarizes the results from the previous
lecture and the results to be obtained in this lecture. In both, the value ε is the difference

20

Convex Strongly convex
Lipschitz ε 6 O(1/

√
t) ε 6 O(1/t)

Smooth ε 6 O(1/t) ε 6 e−Ω(t)

Table 1: Bounds on error ε as a function of number of steps taken t for gradient descent applied
to various classes of functions.

between f at some value x′ computed from the outputs of gradient descent and f
calculated at an optimizer x∗.

Since a rate that is exponential in terms of the magnitude of the error is linear in
terms of the bit precision, this rate of convergence is termed linear. We now move to
prove these rates.

3.3 Convergence rate strongly convex functions

For no good reason we begin with a convergence bound for strongly convex Lipschitz
functions, in which we obtain a O(1/t) rate of convergence.

Theorem 3.3. Assume f : Ω → R is α-strongly convex and L-Lipschitz. Let x∗ be an
optimizer of f , and let xs be the updated point at step s using projected gradient descent. Let the
max number of iterations be t with an adaptive step size ηs =

2
α(s+1) , then

f

(
t

∑
s=1

2s
t(t + 1)

xs

)
− f (x∗) 6

2L2

α(t + 1)

The theorem implies the convergence rate of projected gradient descent for α-strongly
convex functions is similar to that of β-smooth functions with a bound on error ε 6
O(1/t). In order to prove Theorem 3.3, we need the following proposition.

Proposition 3.4 (Jensen’s inequality). Assume f : Ω→ R is a convex function and x1, x2, ...,
, xn, ∑n

i=1 γixi/ ∑n
i=1 γi ∈ Ω with weights γi > 0, then

f
(

∑n
i=1 γixi

∑n
i=1 γi

)
6

∑n
i=1 γi f (xi)

∑n
i=1 γi

For a graphical “proof” follow this link.

Proof of Theorem 3.3. Recall the two steps update rule of projected gradient descent

ys+1 = xs − ηs∇ f (xs)

xs+1 = ΠΩ(ys+1)

21

http://mark.reid.name/blog/behold-jensens-inequality.html

First, the proof begins by exploring an upper bound of difference between function
values f (xs) and f (x∗).

f (xs)− f (x∗) 6 ∇ f (xs)
>(xs − x∗)− α

2
‖xs − x∗‖2

=
1
ηs
(xs − ys+1)

>(xs − x∗)− α

2
‖xs − x∗‖2 (by update rule)

=
1

2ηs
(‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2)− α

2
‖xs − x∗‖2

(by "Fundamental Theorem of Optimization")

=
1

2ηs
(‖xs − x∗‖2 − ‖ys+1 − x∗‖2) +

ηs

2
‖∇ f (xs)‖2 − α

2
‖xs − x∗‖2

(by update rule)

6
1

2ηs
(‖xs − x∗‖2 − ‖xs+1 − x∗‖2) +

ηs

2
‖∇ f (xs)‖2 − α

2
‖xs − x∗‖2

(by Lemma 2.3)

6 (
1

2ηs
− α

2
)‖xs − x∗‖2 − 1

2ηs
‖xs+1 − x∗‖2 +

ηsL2

2
(by Lipschitzness)

By multiplying s on both sides and substituting the step size ηs by 2
α(s+1) , we get

s(f (xs)− f (x∗)) 6
L2

α
+

α

4
(s(s− 1)‖xs − x∗‖2 − s(s + 1)‖xs+1 − x∗‖2)

Finally, we can find the upper bound of the function value shown in Theorem 3.3
obtained using t steps projected gradient descent

f

(
t

∑
s=1

2s
t(t + 1)

xs

)
6

t

∑
s=1

2s
t(t + 1)

f (xs) (by Proposition 3.4)

6
2

t(t + 1)

t

∑
s=1

(
s f (x∗) +

L2

α
+

α

4
(s(s− 1)‖xs − x∗‖2 − s(s + 1)‖xs+1 − x∗‖2)

)
=

2
t(t + 1)

t

∑
s=1

s f (x∗) +
2L2

α(t + 1)
− α

2
‖xt+1 − x∗‖2

(by telescoping sum)

6 f (x∗) +
2L2

α(t + 1)

This concludes that solving an optimization problem with a strongly convex objective
function with projected gradient descent has a convergence rate is of the order 1

t+1 ,
which is faster compared to the case purely with Lipschitzness. �

22

3.4 Convergence rate for smooth and strongly convex functions

Theorem 3.5. Assume f : Rn → R is α-strongly convex and β-smooth. Let x∗ be an
optimizer of f , and let xt be the updated point at step t using gradient descent with a constant
step size 1

β , i.e. using the update rule xt+1 = xt − 1
β∇ f (xt). Then,

‖xt+1 − x∗‖2 6 exp (−t
α

β
)‖x1 − x∗‖2

In order to prove Theorem 3.5, we require use of the following lemma.

Lemma 3.6. Assume f as in Theorem 3.5. Then ∀x, y ∈ Rn and an update of the form
x+ = x− 1

β∇ f (x),

f (x+)− f (y) 6 ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

Proof of Lemma 3.6.

f (x+)− f (x) + f (x)− f (y) 6 ∇ f (x)>(x+ − x) +
β

2
‖x+ − x‖2 (Smoothness)

+∇ f (x)>(x− y)− α

2
‖x− y‖2 (Strong convexity)

= ∇ f (x)>(x+ − y) +
1

2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

(Definition of x+)

= ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

(Definition of x+)

�

Now with Lemma 3.6 we are able to prove Theorem 3.5.

Proof of Theorem 3.5.

‖xt+1 − x∗‖2 = ‖xt −
1
β
∇ f (xt)− x∗‖2

= ‖xt − x∗‖2 − 2
β
∇ f (xt)

>(xt − x∗) +
1
β2‖∇ f (xt)‖2

6
(
1− α

β

)
‖xt − x∗‖2 (Use of Lemma 3.6 with y = x∗, x = xt)

6
(
1− α

β

)t‖x1 − x∗‖2

6 exp
(
−t

α

β

)
‖x1 − x∗‖2 �

23

We can also prove the same result for the constrained case using projected gradient
descent.

Theorem 3.7. Assume f : Ω → R is α-strongly convex and β-smooth. Let x∗ be an
optimizer of f , and let xt be the updated point at step t using projected gradient descent with a
constant step size 1

β , i.e. using the update rule xt+1 = ΠΩ(xt − 1
β∇ f (xt)) where ΠΩ is the

projection operator. Then,

‖xt+1 − x∗‖2 6 exp (−t
α

β
)‖x1 − x∗‖2

As in Theorem 3.5, we will require the use of the following Lemma in order to prove
Theorem 3.7.

Lemma 3.8. Assume f as in Theorem 3.5. Then ∀x, y ∈ Ω, define x+ ∈ Ω as x+ =
ΠΩ(x− 1

β∇ f (x)) and the function g : Ω→ R as g(x) = β(x− x+). Then

f (x+)− f (y) 6 g(x)>(x− y)− 1
2β
‖g(x)‖2 − α

2
‖x− y‖2

Proof of Lemma 3.8. The following is given by the Projection Lemma, for all x, x+, y
defined as in Theorem 3.7.

∇ f (x)>(x+ − y) 6 g(x)>(x+ − y)

Therefore, following the form of the proof of Lemma 3.6,

f (x+)− f (x) + f (x)− f (y) 6 ∇ f (x)>(x+ − y) +
1

2β
‖∇g(x)‖2 − α

2
‖x− y‖2

6 ∇g(x)>(x+ − y) +
1

2β
‖∇g(x)‖2 − α

2
‖x− y‖2

= ∇g(x)>(x− y)− 1
2β
‖∇g(x)‖2 − α

2
‖x− y‖2 �

The proof of Theorem 3.7 is exactly as in Theorem 3.5 after substituting the appropri-
ate projected gradient descent update in place of the standard gradient descent update,
with Lemma 3.8 used in place of Lemma 3.6.

4 Some applications of gradient methods

This lecture was a sequence of code examples that you can find here:

Lecture 4
(opens in your browser)

24

https://ee227c.github.io/code/lecture4.html

5 Conditional gradient method

In this lecture we discuss the conditional gradient method, also known as the Frank-
Wolfe (FW) algorithm [FW56]. The motivation for this approach is that the projection
step in projected gradient descent can be computationally inefficient in certain scenarios.
The conditional gradient method provides an appealing alternative.

5.1 The algorithm

Conditional gradient side steps the projection step using a clever idea.
We start from some point x0 ∈ Ω. Then, for time steps t = 1 to T, where T is our

final time step, we set
xt+1 = xt + ηt(x̄t − xt)

where
x̄t = arg min

x∈Ω
f (xt) +∇ f (xt)

>(x− xt).

This expression simplifies to:

x̄t = arg min
x∈Ω
∇ f (xt)

>x

Note that we need step size ηt ∈ [0, 1] to guarantee xt+1 ∈ Ω.
So, rather than taking a gradient step and projecting onto the constraint set. We opti-

mize a liner function (defined by the gradient) inside the constraint set as summarized
in Figure 3.

Starting from x0 ∈ Ω, repeat:

x̄t = arg min
x∈Ω
∇ f (xt)

>x (linear optimization)

xt+1 = xt + ηt(x̄t − xt) (update step)

Figure 3: Conditional gradient

5.2 Conditional gradient convergence analysis

As it turns out, conditional gradient enjoys a convergence guarantee similar to the one
we saw for projected gradient descent.

25

Theorem 5.1 (Convergence Analysis). Assume we have a function f : Ω→ R that is convex,
β-smooth and attains its global minimum at a point x∗ ∈ Ω. Then, Frank-Wolfe achieves

f (xt)− f (x∗) 6
2βD2

t + 2
with step size

ηt =
2

t + 2
.

Here, D is the diameter of Ω, defined as D = maxx−y∈Ω ‖x− y‖.
Note that we can trade our assumption of the existence of x∗ for a dependence on L,

the Lipschitz constant, in our bound.

Proof of Theorem 5.1. By smoothness and convexity, we have

f (y) 6 f (x) +∇ f (x)>(x− xt) +
β

2
‖x− y‖2

Letting y = xt+1 and x = xt, combined with the progress rule of conditional gradient
descent, the above equation yields:

f (xt+1) 6 f (xt) + ηt∇ f (xt)
>(x̄t − xt) +

η2
t β

2
‖x̄t − xt‖2

We now recall the definition of D from Theorem 5.1 and observe that ‖x̄t − xt‖2 6 D2.
Thus, we rewrite the inequality:

f (xt+1) 6 f (xt) + ηt∇ f (xt)
>(x∗t − xt) +

η2
t βD2

2
Because of convexity, we also have that

∇ f (xt)
>(x∗ − xt) 6 f (x∗)− f (xt)

Thus,

f (xt+1)− f (x∗) 6 (1− ηt)(f (xt)− f (x∗)) +
η2

t βD2

2
(3)

We use induction in order to prove f (xt)− f (x∗) 6 2βD2

t+2 based on Equation 3 above.

Base case t = 0. Since f (xt+1)− f (x∗) 6 (1− ηt)(f (xt)− f (x∗)) + η2
t βD2

2 , when t = 0,
we have ηt =

2
0+2 = 1. Hence,

f (x1)− f (x∗) 6 (1− ηt)(f (xt)− f (x∗)) +
β

2
‖x1 − x∗‖2

= (1− 1)(f (xt)− f (x∗)) +
β

2
‖x1 − x∗‖2

6
βD2

2

6
2βD2

3

26

Thus, the induction hypothesis holds for our base case.

Inductive step. Proceeding by induction, we assume that f (xt)− f (x∗) 6 2βD2

t+2 holds
for all integers up to t and we show the claim for t + 1.

By Equation 3,

f (xt+1)− f (x∗) 6
(

1− 2
t + 2

)
(f (xt)− f (x∗)) +

4
2(t + 2)

βD2

6
(

1− 2
t + 2

)
2βD2

t + 2
+

4
2(t + 2)

βD2

= βD2
(

2t
(t + 2)2 +

2
(t + 2)2

)
= 2βD2 · t + 1

(t + 2)2

= 2βD2 · t + 1
t + 2

· 1
t + 2

6 2βD2 · t + 2
t + 3

· 1
t + 2

= 2βD2 1
t + 3

Thus, the inequality also holds for the t + 1 case.
�

5.3 Application to nuclear norm optimization problems

The code for the following examples can be found here.

5.3.1 Nuclear norm projection

The nuclear norm (sometimes called Schatten 1-norm or trace norm) of a matrix A, denoted
‖A‖∗, is defined as the sum of its singular values

‖A‖∗ = ∑
i

σi(A) .

The norm can be computed from the singular value decomposition of A. We denote the
unit ball of the nuclear norm by

Bm×n
∗ = {A ∈ Rm×n | ‖A‖∗ 6 1}.

How can we project a matrix A onto B∗? Formally, we want to solve

min
X∈B∗

‖A− X‖2
F

27

https://ee227c.github.io/code/lecture5.html

Due to the rotational invariance of the Frobenius norm, the solution is obtained by
projecting the singular values onto the unit simplex. This operation corresponds to
shifting all singular values by the same parameter θ and clipping values at 0 so that
the sum of the shifted and clipped values is equal to 1. This algorithm can be found in
[DSSSC08].

5.3.2 Low-rank matrix completion

Suppose we have a partially observable matrix Y, of which the missing entries are filled
with 0 and we would like to find its completion form projected on a nuclear norm ball.
Formally we have the objective function

min
X∈B∗

1
2
‖Y− PO(X)‖2

F

where PO is a linear projection onto a subset of coordinates of X specified by O. In this
example PO(X) will generate a matrix with corresponding observable entries as in Y
while other entries being 0. We can have PO(X) = X �O where O is a matrix with
binary entries. Calculating the gradient of this function, we have

∇ f (X) = Y− X�O .

We can use projected gradient descent to solve this problem but it is more efficient to
use Frank-Wolfe algorithm. We need to solve the linear optimization oracle

X̄t ∈ argmin
X∈B∗

∇ f (Xt)
>X

To simplify this problem, we need a simple fact that follows from the singular value
decomposition.

Fact 5.2. The unit ball of the nuclear norm is the convex hull of rank-1 matrices

conv{uv>|‖u‖ = ‖v‖ = 1, u ∈ Rm, v ∈ Rn} = {X ∈ Rm×n | ‖X‖∗ = 1} .

From this fact it follows that the minimum of ∇ f (Xt)>X is attained at a rank-1
matrix uv> for unit vectors u and v. Equivalently, we can maximize −∇ f (Xt)>uv>

over all unit vectors u and v. Put Z = −∇ f (XT) and note that

Z>uv> = tr(Z>uv>) = tr(u>Zv) = u>Zv .

Another way to see this is to note that the dual norm of a nuclear norm is operator
norm,

‖Z‖ = max
‖X‖∗61

〈Z, X〉 .

Either way, we see that to run Frank-Wolfe over the nuclear norm ball we only need
a way to compute the top left and singular vectors of a matrix. One way of doing this is
using the classical power method described in Figure 4.

28

• Pick a random unit vector x1 and let y1 = A>x/‖A>x‖.

• From k = 1 to k = T − 1 :

– Put xk+1 = Ayk
‖Ayk‖

– Put yk+1 =
A>xk+1
‖A>xk+1‖

• Return xT and yT as approximate top left and right singular vectors.

Figure 4: Power method

Part II

Accelerated gradient methods
We will now develop a set of techniques that allows us to obtain faster rates of conver-
gence than those of the basic gradient method. In the case of quadratics, the ideas are
simple, natural, and lead to practically important algorithms. The theme of accelera-
tion extends to arbitrary smooth and convex functions, even if the resulting method
is not necessarily superior in practice. Ending on a note of caution, we will see how
acceleration trades off with robustness. Accelerated gradient methods inherently lack
the robustness to noise that the basic gradient method enjoys.

6 Discovering acceleration

In this lecture, we seek to find methods that converge faster than those discussed in
previous lectures. To derive this accelerated method, we start by considering the special
case of optimizing quadratic functions. Our exposition loosely follows Chapter 17 in
Lax’s excellent text [Lax07].

6.1 Quadratics

Definition 6.1 (Quadratic function). A quadratic function f : Rn → R takes the form:

f (x) =
1
2

xT Ax− bTx + c,

where A ∈ Sn, b ∈ Rn and c ∈ R.

Note that substituting n = 1 into the above definition recovers the familiar univariate
quadratic function f (x) = ax2 + bx + c where a, b, c ∈ R, as expected. There is one

29

subtlety in this definition: we restrict A to be symmetric. In fact, we could allow
A ∈ Rn×n and this would define the same class of functions, since for any A ∈ Rn×n

there is a symmetric matrix Ã = 1
2

(
A + AT) for which:

xT Ax = xT Ãx ∀x ∈ Rn.

Restricting A ∈ Sn ensures each quadratic function has a unique representation.
The gradient and Hessian of a general quadratic function take the form:

∇ f (x) = Ax− b

∇2 f (x) = A.

Note provided A is non-singular, the quadratic has a unique critical point at:

x∗ = A−1b.

When A � 0, the quadratic is strictly convex and this point is the unique global minima.

6.2 Gradient descent on a quadratic

In this section we will consider a quadratic f (x) where A is positive definite, and in
particular that:

αI � A � βI,

for some 0 < α < β. This implies that f is α-strongly convex and β-smooth.
From Theorem 3.7 we know that under these conditions, gradient descent with the

appropriate step size converges linearly at the rate exp
(
−t α

β

)
. Clearly the size of α

β can
dramatically affect the convergence guarantee. In fact, in the case of a quadratic, this is
related to the condition number of the matrix A.

Definition 6.2 (Condition number). Let A be a real matrix. Its condition number (with
respect to the Euclidean norm) is:

κ(A) =
σmax(A)

σmin(A)
,

the ratio of its largest and smallest eigenvalues.

So in particular, we have that κ(A) 6 β
α ; henceforth, we will assume that α, β

correspond to the minimal and maximal eigenvalues of A so that κ(A) = β
α . It follows

from Theorem 3.5 that gradient descent with a constant step size 1
β converges as

‖xt+1 − x∗‖2 6 exp
(
−t

1
κ

)
‖x1 − x∗‖2 .

30

In many cases, the function f is ill-conditioned and κ can easily take large values. In
this case, case convergence could be very slow as we will need t > κ before the error
gets small. Can we do better than this?

To answer this question, it will be instructive to analyze gradient descent specifically
for quadratic functions, and derive the convergence bound that we previously proved
for any strongly convex smooth functions. This exercise will show us where we are
losing performance, and suggest a method that can attain better guarantees.

Theorem 6.3. Assume f : Rn → R is a quadratic where the quadratic coefficient matrix has a
condition number κ. Let x∗ be an optimizer of f , and let xt be the updated point at step t using
gradient descent with a constant step size 1

β , i.e. using the update rule xt+1 = xt − 1
β∇ f (xt).

Then:
‖xt+1 − x∗‖2 6 exp

(
− t

κ

)
‖x1 − x∗‖2.

Proof. Consider the quadratic function

f (x) =
1
2

xT Ax− bTx + c ,

where A is a symmetric n× n matrix, b ∈ Rn and c ∈ R. A gradient descent update
with step size ηt takes the form:

xt+1 = xt − ηt∇ f (xt) = xt − ηt (Axt − b)

Subtracting x∗ from both sides of this equation and using the property that Ax∗ − b =
∇ f (x∗) = 0:

xt+1 − x∗ = (xt − ηt (Axt − b))− (x∗ − ηt (Ax∗ − b))
= (I − ηt A)(xt − x∗)

=
t

∏
k=1

(I − ηk A)(x1 − x∗) .

Thus,

‖xt+1 − x∗‖2 6

∥∥∥∥∥ t

∏
k=1

(I − ηt A)

∥∥∥∥∥
2

‖x1 − x∗‖2 6

(
t

∏
k=1
‖I − ηk A‖2

)
‖x1 − x∗‖2 .

Set ηk =
1
β for all k. Note that α

β I � 1
β A � I, so:∥∥∥∥I − 1

β
A
∥∥∥∥

2
= 1− α

β
= 1− 1

κ
.

It follows that

‖xt+1 − x∗‖2 6
(

1− 1
κ

)t

‖x1 − x∗‖2 6 exp
(
− t

κ

)
‖x1 − x∗‖2 . �

31

6.3 Connection to polynomial approximation

In the previous section, we proved an upper bound on the convergence rate. In this
section, we would like to improve on this. To see how, think about whether there was
any point in the argument above where we were careless? One obvious candidate is
that our choice of step size, ηk =

1
β , was chosen rather arbitrarily. In fact, by choosing

the sequence ηk we can select any degree-t polynomial of the form:

p(A) =
t

∏
k=1

(I − ηk A) .

Note that:
‖p(A)‖ = max

x∈λ(A)
|p(x)|

where p(A) is a matrix polynomial, and p(t) is the corresponding scalar polynomial.
In general, we may not know the set of eigenvalues λ(A), but we do know that all
eigenvalues are in the range [α, β]. Relaxing the upper bound, we get

‖p(A)‖ 6 max
x∈[α,β]

|p(x)| .

We can see now that we want a polynomial p(a) that takes on small values in [α, β],
while satisfying the additional normalization constraint p(0) = 1.

6.3.1 A simple polynomial solution

A simple solution has a uniform step size ηt =
2

α+β . Note that

max
x∈[α,β]

∣∣∣∣1− 2
α + β

x
∣∣∣∣ = β− α

α + β
6

β− α

β
= 1− 1

κ
,

recovering the same convergence rate we proved previously. The resulting polynomial
pt(x) is plotted in Figure 5 for degrees t = 3 and t = 6, with α = 1 and β = 10. Note
that doubling the degree from three to six only halves the maximum absolute value the
polynomial attains in [α, β], explaining why convergence is so slow.

6.4 Chebyshev polynomials

Fortunately, we can do better than this by speeding up gradient descent using Cheby-
shev polynomials. We will use Chebyshev polynomials of the first kind, defined by the
recurrence relation:

T0(a) = 1, T1(a) = a
Tk(a) = 2aTk−1(a)− Tk−2(a), for k > 2 .

32

0 2 4 6 8 10
0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 degree 3
max value
degree 6
max value

Figure 5: Naive Polynomial

Figure 6 plots the first few Chebyshev polynomials.
Why Chebyshev polynomials? Suitably rescaled, they minimize the absolute value

in a desired interval [α, β] while satisfying the normalization constraint of having value 1
at the origin.

Recall that the eigenvalues of the matrix we consider are in the interval [α, β]. We
need to rescale the Chebyshev polynomials so that they’re supported on this interval
and still attain value 1 at the origin. This is accomplished by the polynomial

Pk(a) =
Tk

(
α+β−2a

β−α

)
Tk

(
α+β
β−α

) .

We see on figure 7 that doubling the degree has a much more dramatic effect on the
magnitude of the polynomial in the interval [α, β].

Let’s compare on figure 8 this beautiful Chebyshev polynomial side by side with
the naive polynomial we saw earlier. The Chebyshev polynomial does much better: at
around 0.3 for degree 3 (needed degree 6 with naive polynomial), and below 0.1 for
degree 6.

6.4.1 Accelerated gradient descent

The Chebyshev polynomial leads to an accelerated version of gradient descent. Before
we describe the iterative process, let’s first see what error bound comes out of the
Chebyshev polynomial.

33

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Chebychev polynomials of varying degrees.

So, just how large is the polynomial in the interval [α, β]? First, note that the
maximum value is attained at α. Plugging this into the definition of the rescaled
Chebyshev polynomial, we get the upper bound for any a ∈ [α, β],

|Pk(a)| 6 |Pk(α)| =
|Tk(1)|
|TK

(
β+α
β−α

)
|
6

∣∣∣∣∣TK

(
β + α

β− α

)−1
∣∣∣∣∣ .

Recalling the condition number κ = β/α, we have

β + α

β− α
=

κ + 1
κ − 1

.

Typically κ is large, so this is 1 + ε, ε ≈ 2
κ . Therefore, we have

|Pk(a)| 6 |Tk(1 + ε)−1|.

To upper bound |Pk|, we need to lower bound |Tk(1 + ε)|.
Fact: for a > 1, Tk(a) = cosh (k · arccosh(a)) where:

cosh(a) =
ea + e−a

2
, arccosh(a) = ln

(
x +

√
x2 − 1

)
.

34

0 2 4 6 8 10

0.2

0.0

0.2

0.4

0.6

0.8

1.0 degree 3
max value
degree 6
max value

Figure 7: Rescaled Chebyshev

Now, letting φ = arccosh(1 + ε):

eφ = 1 + ε +
√

2ε + ε2 > 1 +
√

ε.

So, we can lower bound |Tk(1 + ε)|:

|Tk(1 + ε)| = cosh (karccosh(1 + ε))

= cosh(kφ)

=
(eφ)k + (e−φ)k

2

>
(1 +

√
ε)k

2
.

Then, the reciprocal is what we needed to upper bound the error of our algorithm,
so we have:

|Pk(a)| 6 |Tk(1 + ε)−1| 6 2(1 +
√

ε)−k.

Thus, this establishes that the Chebyshev polynomial achieves the error bound:

‖xt+1 − x∗‖ 6 2(1 +
√

ε)−t ‖x0 − x∗‖

≈ 2

(
1 +

√
2
κ

)−t

‖x0 − x∗‖

6 2 exp

(
−t

√
2
κ

)
‖x0 − x∗‖ .

35

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0 deg-6 chebyshev
max value
deg-6 naive
max value

Figure 8: Rescaled Chebyshev VS Naive Polynomial

This means that for large κ, we get quadratic savings in the degree we need before
the error drops off exponentially. Figure 9 shows the different rates of convergence, we
clearly see that the

6.4.2 The Chebyshev recurrence relation

Due to the recursive definition of the Chebyshev polynomial, we directly get an iterative
algorithm out of it. Transferring the recursive definition to our rescaled Chebyshev
polynomial, we have:

PK+1(a) = (ηka + γk)Pk(a) + µkPk−1(a).

where we can work out the coefficients ηk, γk, µk from the recurrence definition.
Since Pk(0) = 1, we must have γk + µk = 1. This leads to a simple update rule for our
iterates:

xk+1 = (ηk A + γk)xk + (1− γK)xk−1 − ηkb
= (ηk A + (1− µk))xk + µkxk−1 − ηkb
= xk − ηk(Axk − b) + µk(xk − xk−1).

We see that the update rule above is actually very similar to plain gradient descent
except for the additional term µk(xk− xk−1). This term can be interpreted as a momentum
term, pushing the algorithm in the direction of where it was headed before. In the
next lecture, we’ll dig deeper into momentum and see how to generalize the result for
quadratics to general convex functions.

36

0.00 0.02 0.04 0.06 0.08 0.10
0

10

20

30

40 T10(1 +)
(1 +)10/2

Figure 9: Convergence for naive polynomial and Chebyshev

7 Krylov subspaces, eigenvalues, and conjugate gradient

In this lecture, we’ll develop a unified view of solving linear equations Ax = b and
eigenvalue problems Ax = λx. In particular, we will justify the following picture.

Ax = b Ax = λx
Basic Gradient descent Power method

Accelerated Chebyshev iteration Chebyshev iteration
Accelerated and step size free Conjugate gradient Lanczos

What we saw last time was the basic gradient descent method and Chebyshev
iteration for solving quadratics. Chebyshev iteration requires step sizes to be carefully
chosen. In this section, we will see how we can get a “step-size free” accelerated method,
known as conjugate gradient.

What ties this all together is the notion of a Krylov subspace and its corresponding
connection to low-degree polynomials.

Our exposition follows the excellent Chapter VI in Trefethen-Bau [TD97].

7.1 Krylov subspaces

The methods we discuss all have the property that they generate a sequence of points
iteratively that is contained in a subspace called the Krylov subspace.

Definition 7.1 (Krylov subspace). For a matrix A ∈ Rnxn and a vector b ∈ Rn, the
Krylov sequence of order t is b, Ab, A2b,, Atb. We define the Krylov subspace as

Kt(A, b) = span({b, Ab, A2b, . . . , At}) ⊆ Rn .

37

Krylov subspace naturally connect to polynomial approximation problems. To see
this, recall that a degree t matrix polynomial is an expression of the form p(A) =

∑t
i=1 αi Ai.

Fact 7.2 (Polynomial connection). The Krylov subspace satisfies

Kt(A, b) = {p(A)b : deg(p) 6 t} .

Proof. Note that

v ∈ Kt(A, b)⇐⇒ ∃αi : v = α0b + α1Ab + · · · αt Atb

�

From here on, suppose we have a symmetric matrix A ∈ Rn×n that has orthonormal
eigenvectors u1 . . . un and ordered eigenvalues λ1 > λ2 . . . > λn. Recall, this means

〈ui, uj〉 = 0, for i 6= j

〈ui, ui〉 = 1

Using that A = ∑i λiuiu>i , it follows

p(A)ui = p(λi)ui .

Now suppose we write b in the eigenbasis of A as

b = α1u1 + ... + αnun

with αi = 〈ui, b〉. It follows that

p(A)b = α1p(λ1)u1 + α2p(λ2)u2 + . . . + αn p(λn)un .

7.2 Finding eigenvectors

Given these ideas, one natural approach to finding eigenvectors is to find a polynomial p
such that

p(A)b ≈ α1u1 .

Ideally, we would have p(λ1) = 1 and p(λi) = 0 for i > 1, but this is in general
impossible unless we make he degree of our polynomial as high as the number of
distinct eigenvalues of A. Keep in mind that the degree ultimately determines the
number of steps that our iterative algorithm makes. We’d therefore like to keep it as
small as possible.

That’s why we’ll settle for an approximate solution that has p(λ1) = 1 and makes
maxi>1 p(λi) as small as possible. This will give us a close approximation to the top

38

eigenvalue. In practice, we don’t know the value λ1 ahead of time. What we there-
fore really care about is the ratio p(λ1)/p(λ2) so that no matter what λ1, the second
eigenvalue will get mapped to a much smaller value by p.

We consider the following simple polynomial p(λ) = λt that satisfies

p(λ2)/p(λ1) =

(
λ2

λ1

)t

In the case where λ1 = (1 + ε)λ2 we need t = O(1/ε) to make the ratio small.
The next lemma turns a small ratio into an approximation result for the top eigen-

vector. To state the lemma, we recall that tan∠(a, b) is the tangent of the angle between
a and b.

Lemma 7.3. tan∠(p(A)b, u1) 6 maxj>1
|p(λj)|
|p(λ1)| tan∠(b, u1)

Proof. We define θ = ∠(u1, b). By this, we get

sin2 θ = ∑
j>1

α2
j

cos2 θ = |α1|2

tan2 θ = ∑
j>1

|α2
j |

|α1|2

Now we can write:

tan2∠(p(A)b, u1) = ∑
j>1

|p(λj)αj|2
|p(λ1)α1|2

6 max
j>1

|p(λj)|2
|p(λ1)|2 ∑

j>1

αj|2
|α1|2

We note that this last sum ∑j>1
αj|2
|α1|2 = tan θ and we obtain our desired result. �

Applying the lemma to p(λ) = λt and λ1 = (1 + ε)λ2, we get

tan∠(p(A)b, u1) 6 (1 + ε)−t tan∠(u1, b) .

If there is a big gap between λ1 and λ2 this converges quickly but it can be slow if
λ1 ≈ λ2. It worth noting that if we choose b ∈ Rn to be a random direction, then

E [tan∠(u1, b)] = O
(√

n
)

.

Going one step further we can also see that the expression p(A)b = Atb can of course
be built iteratively by repeatedly multiplying by A. For reasons of numerical stability it
makes sense to normalize after each matrix-vector multiplication. This preserved the

39

direction of the iterate and therefore does not change our convergence analysis. The
resulting algorithms is the well known power method, defined recursively as follows:

x0 =
b
‖b‖

xt =
Axt−1

‖Axt−1‖
This method goes back more than hundred years to a paper by Müntz in 1913, but
continues to find new applications today.

7.3 Applying Chebyshev polynomials

As we would expect from the development for quadratics, we can use Chebyshev
polynomials to get a better solution the polynomial approximation problem that we
posed above. The idea is exactly the same with the small difference that we normalize
our Chebyshev polynomial slightly differently. This time around, we want to ensure
that p(λ1) = 1 so that we are picking out the first eigenvalue with the correct scaling.

Lemma 7.4. A suitably rescaled degree t Chebyshev polynomial achieves

min
p(λ1)=1

max
λ∈[λ2,λn]

p(λ) 6
2

(1 + max{√ε, ε})t

where ε = λ1
λ2
− 1 quantifies the gap between the first and second eigenvalue.

Note that the bound is much better than the previous one when ε is small. In the case
of quadratics, the relevant “ε-value” was the inverse condition number. For eigenvalues,
this turns into the gap between the first and second eigenvalue.

Ax = b Ax = λx
ε 1

κ = α
β

λ1
λ2
− 1

As we saw before, Chebyshev polynomials satisfy a recurrence relation that can be
used to derive an iterative method achieving the bound above. The main shortcoming
of this method is that it needs information about the location of the first and second
eigenvalue. Instead of describing this algorithm, we move on to an algorithm that
works without any such information.

7.4 Conjugate gradient method

At this point, we switch back to linear equations Ax = b for a symmetric positive
definite matrix A ∈ Rn×n. The method we’ll see is called conjugate gradient and is an
important algorithm for solving linear equations. Its eigenvalue analog is the Lanczos
method. While the ideas behind these methods are similar, the case of linear equations
is a bit more intuitive.

40

Definition 7.5 (Conjugate gradient method). We want to solve Ax = b, with A � 0
symmetric. The conjugate gradient method maintains a sequence of three points:

x0 = 0 (“candidate solution”)
r0 = b (“residual”)
p0 = r0 (“search direction”)

For t > 1 :

ηt =
‖rt−1‖2

〈pt−1, Apt−1〉
(“step size”)

xt = xt−1 + ηt pt−1

rt = rt−1 − ηt Apt−1

pt = rt +
‖rt‖2

‖rt−1‖2 pt−1

Lemma 7.6. The following three equations must always be true for the conjugate gradient
method algorithm:

• span({r0, ...rt−1}) = Kt(A, b)

• For j < t we have 〈rt, rj〉 = 0 and in particular rt ⊥ Kt(A, b).

• The search directions are conjugate p>i Apj = 0 for i 6= j.

Proof. Proof by induction (see Trefethen and Bau). Show that the conditions are true
initially and stay true when the update rule is applied. �

Lemma 7.7. Let ‖u‖A =
√

u>Au and 〈u, v〉A = u>Av and et = x∗− xt. Then et minimizes
‖x∗ − x‖A over all vectors x ∈ Kt−1.

Proof. We know that xt ∈ Kt. Let x ∈ Kt and define x = xt− δ. Then, e = x∗− x = et + δ.
We compute the error in the A norm:

‖x∗ − x‖2
A = (et + δ)>A(et + δ)

= e>t Aet + δ>Aδ + 2e>t Aδ

By definition e>t A = rt. Note that δ ∈ Kt. By Lemma 7.6, we have that rt ⊥ Kt(A, b).
Therefore, 2e>t Aδ = 0 and hence,

‖e‖2
A = ‖x∗ − x‖2

A = e>t Aet + δ>Aδ > ‖et‖A .

In the last step we used that A � 0. �

41

What the lemma shows, in essence, is that conjugate gradient solves the polynomial
approximation problem:

min
p : deg(p)6t,p(0)=1

‖p(A)e0‖A .

Moreover, it’s not hard to show that

min
p : deg(p)6t,p(0)=1

‖p(A)e0‖A

‖e0‖A
6 min

p : deg(p)6t,p(0)=1
max

λ∈Λ(A)
|p(λ)| .

In other words, the error achieved by conjugate gradient is no worse that the error
of the polynomial approximation on the RHS, which was solved by the Chebyshev
approximation. From here it follows that conjugate gradient must converge at least as
fast in ‖ · ‖A-norm than Chebyshev iteration.

8 Nesterov’s accelerated gradient descent

Previously, we saw how we can accelerate gradient descent for minimizing quadrat-
ics f (x) = x>Ax + b>x, where A is a positive definite matrix. In particular, we achieved
a quadratic improvement in the dependence on the condition number of the matrix A
than what standard gradient descent achieved. The resulting update rule had the form

xt+1 = xt − ηt∇ f (xt) + µ(xt − xt−1) ,

where we interpreted the last term as a form of “momentum”. In this simple form, the
update rule is sometimes called Polyak’s heavy ball method.

To get the same accelerated convergence rate for general smooth convex functions
that we saw for quadratics, we will have to work a bit harder and look into Nesterov’s
celebrated accelerated gradient method [Nes83, Nes04]

Specifically, we will see that Nesterov’s method achieves a convergence rate ofO
(

β
t2

)
for β-smooth functions. For smooth functions which are also α-strongly convex, we will

achieve a rate of exp
(
−Ω

(√
β
α t
))

.

The update rule is a bit more complicated than the plain momentum rule and
proceeds as follows:

x0 = y0 = z0,
xt+1 = τzt + (1− τ)yt (t > 0)

yt = xt −
1
β
∇ f (xt) (t > 1)

zt = zt−1 − η∇ f (xt) (t > 1)

Here, the parameter β is the smoothness constant of the function we’re minimizing. The
step size η and the parameter τ will be chosen below so as to give us a convergence
guarantee.

42

8.1 Convergence analysis

We first show that for a simple setting of the step sizes, the algorithm reduces its
initial error from some value d to d

2 . We will then repeatedly restart the algorithm to
continue reducing the error. This is a slight departure from Nesterov’s method which
does not need restarting, albeit requiring a much more delicate step size schedule that
complicates the analysis.

Lemma 8.1. Suppose f : Rn → R is a convex, β-smooth function that attains its minimum at
a point x∗ ∈ Rn. Assume that the initial point satisfies ‖x0− x∗‖ 6 R and f (x0)− f (x∗) 6 d.
Put η = R√

dβ
, and choose τ such that 1−τ

τ = ηβ. Then after T = 4R
√

β/d steps, the average

iterate x̄ = 1
T ∑T−1

k=0 xt satisfies
f (x̄)− f (x∗) 6 d/2 .

Proof. When introducing smoothness in Section 2.3, we saw Lemma 2.8 that implies

f (yt)− f (xt) 6 −
1

2β
‖∇ f (xt)‖2 . (4)

By the “Fundamental Theorem of Optimization" (see Lecture 2), we have for all u ∈ Rn :

η〈∇ f (xt+1), zt − u〉 = η2

2
‖∇ f (xt+1)‖2 +

1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2 . (5)

Substituting the first equation yields

η〈∇ f (xt+1, zt − u〉 6 η2β(f (xt+1)− f (yt+1)) +
1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2 (6)

Working towards a term that we can turn into a telescoping sum, we compute the

following difference

η〈∇ f (xt+1), xt+1 − u〉 − η〈∇ f (xt+1), zt − u〉
= η〈∇ f (xt+1), xt+1 − zt〉

=
1− τ

τ
η〈∇ f (xt+1), yt − xt+1〉

6
1− τ

τ
η(f (yt)− f (xt+1)) (by convexity). (7)

Combining (6) and (7), and setting 1−τ
τ = ηβ yield for all u ∈ Rn :

η〈∇ f (xt+1), xt+1 − u〉 6 η2β(f (yt)− f (yt+1)) +
1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2.

Proceeding as in our basic gradient descent analysis, we apply this inequality for u = x∗,
sum it up from k = 0 to T and exploit the telescoping sum.

ηT(f (x̄)− f (x∗)) 6
T

∑
k=0

η〈∇ f (xt+1), xt+1 − x∗〉 6 η2βd + R2,

43

By rearranging,

f (x̄)− f (x∗) 6
ηβd

T
+

R2

ηT
=

2
√

βd
T

R 6
d
2

,

since η = R/
√

βd and T > 4R
√

β/D. �

This lemma appears in work by Allen-Zhu and Orecchia [AZO17], who interpret
Nesterov’s method as a coupling of two ways of analyzing gradient descent. One is
the the inequality in (4) that is commonly used in the analysis of gradient descent for
smooth functions. The other is Equation 5 commonly used in the convergence analysis
for non-smooth functions. Both were shown in our Lecture 2.

Theorem 8.2. Under the assumptions of Lemma 8.1, by restarting the algorithm repeatedly, we
can find a point x such that

f (x)− f (x∗) 6 ε

with at most O(R
√

β/ε) gradient updates.

Proof. By Lemma 8.1, we can go from error d to d/2 with CR
√

β/d gradient updates for
some constant C. Initializing each run with the output of the previous run, we can there
for successively reduce the error from an initial value d to d/2 to d/4 and so on until
we reach error ε after O(log(d/ε)) runs of the algorithm. The total number of gradient
steps we make is

CR
√

β/d + CR
√

2β/d + · · ·+ CR
√

β/ε = O
(

R
√

β/ε
)

.

Note that the last run of the algorithm dominates the total number of steps up to a
constant factor. �

8.2 Strongly convex case

We can prove a variant of Lemma 8.1 that applies when the function is also α-strongly
convex, ultimately leading to a linear convergence rate. The idea is just a general trick
to convert a convergence rate for a smooth function to a convergence rate in domain
using the definition of strong convexity.

Lemma 8.3. Under the assumption of Lemma 8.1 and the additional assumption that the

function f is α-strongly convex, we can find a point x with T = O
(√

β
α

)
gradient updates

such that
‖x̄− x∗‖2 6

1
2
‖x0 − x∗‖2 .

44

Proof. Noting that ‖x0 − x∗‖2 6 R2, we can apply Theorem 8.2 with error parameter
ε = α

4‖x0 − x∗‖2 to find a point x such that

f (x)− f (x∗) 6
α

4
‖x0 − x∗‖2 ,

while only making O
(√

β/α
)

many steps. From the definition of strong convexity it
follows that

α

2
‖x− x∗‖2 6 f (x)− f (x∗) .

Combining the two inequalities gives the statement we needed to show. �

We see from the lemma that for strongly convex function we actually reduce the
distance to the optimum in domain by a constant factor at each step. We can therefore
repeatedly apply the lemma to get a linear convergence rate.

Table 2 compares the bounds on error ε(t) as a function of the total number of steps
when applying Nesterov’s method and ordinary gradient descent method to different
functions.

Nesterov’s Method Ordinary GD Method
β-smooth, convex O

(
β/t2) O (β/t)

β-smooth, α-strongly convex exp
(
−Ω(t

√
α/β)

)
exp (−Ω(tα/β))

Table 2: Bounds on error ε as a function of number of iterations t for different methods.

9 Lower bounds and trade-offs with robustness

In the first part of this lecture, we study whether the convergence rates derived in
previous lectures are tight. For several classes of optimization problems (smooth,
strongly convex, etc), we prove the answer is indeed yes. The highlight of this analysis
is to show the O(1/t2) rate achieved by Nesterov’s accelerated gradient method is
optimal (in a weak technical sense) for smooth, convex functions.

In the second part of this lecture, we go beyond studying convergence rates and
look towards other ways of comparing algorithms. We show the improved rates of
accelerated gradient methods come at a cost in robustness to noise. In particular, if we
restrict ourselves to only using approximate gradients, the standard gradient method
suffers basically no slowdown, whereas the accelerated gradient method accumulates
errors linearly in the number of iterations.

45

Table 3: Upper Bounds from Lectures 2-8

Function class Algorithm Rate
Convex, Lipschitz Gradient descent RL/

√
t

Strongly convex, Lipschitz Gradient descent L2/(αt)
Convex, smooth Accelerated gradient descent βR2/t2

9.1 Lower bounds

Before launching into a discussion of lower bounds, it’s helpful to first recap the upper
bounds obtained thus far. For a convex function f , Table 3 summarizes the assumptions
and rates proved in the first several lectures.

Each of the rates in Table 3 is obtained using some variant of the gradient method.
These algorithms can be thought of as a procedure that maps a history of points and
subgradients (x1, g1, . . . , xt, gt) to a new point xt+1. To prove lower bounds, we restrict
the class of algorithms to similar procedures. Formally, define a black-box procedure as
follows.

Definition 9.1 (Black-Box Procedure). A black-box procedure generates a sequence of
points {xt} such that

xt+1 ∈ x0 + span{g1, . . . , gt},
and gs ∈ ∂ f (xs).

Throughout, we will further assume x0 = 0. As expected, gradient descent is a
black-box procedure. Indeed, unrolling the iterates, xt+1 is given by

xt+1 = xt − η∇ f (xt)

= xt−1 − η∇ f (xt−2)− η∇ f (xt−1)

= x0 −
t

∑
i=0

η∇ f (xi).

We now turn to proving lower bounds on the convergence rate for any black-box
procedure. Our first theorem concerns the constrained, non-smooth case. The theorem
is originally from [Nes83], but the presentation will follow [Nes04].

Theorem 9.2 (Constrainted, Non-Smooth f). Let t 6 n, L, R > 0. There exists a convex
L-Lipschitz function f such that any black-box procedure satisfies

min
16s6t

f (xs)− min
x∈B2(R)

f (x) >
RL

2(1 +
√

t)
. (8)

Furthermore, there is an α-strongly convex, L-Lipschitz function f such that

min
16s6t

f (xs)− min
x∈B2(

L
2α)

f (x) >
L2

8αt
. (9)

46

The proof strategy is to exhibit a convex function f so that, for any black-box
procedure, span{g1, g2, . . . , gi} ⊂ span{e1, . . . , ei}, where ei is the i-th standard basis
vector. After t steps for t < n, at least n− t coordinates are exactly 0, and the theorem
follows from lower bounding the error for each coordinate that is identically zero.

Proof. Consider the function

f (x) = γ max
16i6t

x[i] +
α

2
‖x‖2,

for some γ, α ∈ R. In the strongly convex case, γ is a free parameter, and in the Lipschitz
case both α and γ are free parameters. By the subdifferential calculus,

∂ f (x) = αx + γ conv{ei : i ∈ argmax
16j6t

x(j)}.

The function f is evidently α-strongly convex. Furthermore, if ‖x‖ 6 R and g ∈ ∂ f (x),
then ‖g‖ 6 αR + γ, so f is (αR + γ)-Lipschitz on B2(R).

Suppose the gradient oracle returns gi = αx + γei, where i is the first coordinate
such that x[i] = max16j6t x[j]. An inductive argument then shows

xs ∈ span{e1, . . . , es−1}

Consequently, for s 6 t, f (xs) > 0. However, consider y ∈ Rn such that

y[i] =

{
− γ

αt if 1 6 i 6 t
0 otherwise.

Since 0 ∈ ∂ f (y), y is an minimizer of f with objective value

f (y) =
−γ2

αt
+

α

2
γ2

α2t
= − γ2

2αt
,

and hence f (xs)− f (y) > γ2

2αt . We conclude the proof by appropriately choosing α and
γ. In the convex, Lipschitz case, set

α =
L
R

1
1 +
√

t
and γ = L

√
t

1 +
√

t
.

Then, f is L-Lipschitz,

‖y‖ =
√

t
(−γ

αt

)2

=
γ

α
√

t
= R

and hence

f (xs)− min
x∈B2(R)

f (x) = f (xs)− f (y) >
γ2

2αt
=

RL
2(1 +

√
t)

.

47

In the strongly-convex case, set γ = L
2 and take R = L

2α . Then, f is L-Lipschitz,

‖y‖ = γ

α
√

t
=

L
2α
√

t
=

R√
t
6 R,

and therefore

f (xs)− min
x∈B2(L/2α)

f (x) = f (xs)− f (y) >
LR
4t

=
L2

8αt
.

�

Next, we study the smooth, convex case and show the O(1/t2) rate achieved by
accelerated gradient descent is optimal.

Theorem 9.3 (Smooth- f). Let t 6 n−1
2 , β > 0. There exists a β-smooth convex quadratic f

such that any black-box method satisfies

min
16s6t

f (xs)− f (x?) >
3β‖x0 − x?‖2

2
32(t + 1)2 . (10)

Similar to the previous theorem, the proof strategy is to exhibit a pathological convex
function. In this case, we choose what Nesterov calls “the worst-function in the world”
[Nes04].

Proof. Without loss of generality, let n = 2t + 1. Let L ∈ Rn×n be the tridiagonal matrix

L =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 0 −1 2 · · · 0
...

...
...

...
0 0 0 0 · · · 2


.

The matrix L is almost the Laplacian of the cycle graph (in fact, it’s the Laplacian of the
chain graph).1 Notice

x>Lx = x[1]2 + x[n]2 +
n−1

∑
i=1

(x[i]− x[i + 1])2,

and, from this expression, it’s a simple to check 0 � L � 4I. Define the following
β-smooth convex function

f (x) =
β

8
x>Lx− β

4
〈x, e1〉.

1https://en.wikipedia.org/wiki/Laplacian_matrix

48

https://en.wikipedia.org/wiki/Laplacian_matrix

The optimal solution x? satisfies Lx? = e1, and solving this system of equations gives

x?[i] = 1− i
n + 1

,

which has objective value

f (x?) =
β

8
x?>Lx? − β

4
〈x?, e1〉

= −β

8
〈x?, e1〉 = −

β

8
(1− 1

n + 1
).

Similar to the proof of Theorem 9.2, we can argue

xs ∈ span{e1, . . . , es−1},
so if x0 = 0, then xs[i] = 0 for i > s for any black-box procedure. Let x?s = argminx : i>s,x[i]=0 f (x).
Notice x?s is the solution of a smaller s× s Laplacian system formed by the first s rows
and columns of L, so

x?s [i] =

{
1− i

s+1 if i < s
0 otherwise,

which has objective value f (x?s) = − β
8 (1− 1

s+1). Therefore, for any s 6 t,

f (xs)− f (x?) > f (x?t)− f (x?)

>
β

8

(
1

t + 1
− 1

n + 1

)
=

β

8

(
1

t + 1
− 1

2(t + 1)

)
=

β

8
1

2(t + 1)
.

To conclude, we bound the initial distance to the optimum. Recalling x0 = 0,

‖x0 − x?‖2 = ‖x?‖2 =
n

∑
i=1

(1− i
n + 1

)2

= n− 2
n + 1

n

∑
i=1

i +
1

(n + 1)2

n

∑
i=1

i2

6 n− 2
n + 1

n

∑
i=1

i +
1

(n + 1)2

∫ n+1

1
x2 dx

6 n− 2
n + 1

n(n + 1)
2

+
1

(n + 1)2
(n + 1)3

3

=
(n + 1)

3

=
2(t + 1)

3
.

49

Combining the previous two displays, for any s 6 t,

f (xs)− f (x?) >
β

8
1

2(t + 1)
>

3β‖x0 − x?‖2

32(t + 1)2 .

�

9.2 Robustness and acceleration trade-offs

The first part of the course focused almost exclusively on convergence rates for optimiza-
tion algorithms. From this perspective, a better algorithm is one with a faster rate of
convergence. A theory of optimization algorithms that stops with rates of convergence
is incomplete. There are often other important algorithm design goals, e.g. robustness
to noise or numerical errors, that are ignored by focusing on converges rates, and when
these goals are of primary importance, excessive focus on rates can lead practitioners to
choose the wrong algorithm. This section deals with one such case.

In the narrow, technical sense of the previous section, Nesterov’s Accelerated Gra-
dient Descent is an “optimal” algorithm, equipped with matching upper and lower
bounds on it’s rate of convergence. A slavish focus on convergence rates suggests
one should then always use Nesterov’s method. Before coronating Nesterov’s method,
however, it is instructive to consider how it performs in the presence of noise.

Figure 10 compares the performance of vanilla gradient descent and Nesterov’s
accelerated gradient descent on the function f used in the proof of Theorem 9.3. In the
noiseless case, the accelerated method obtains the expected speed-up over gradient
descent. However, if we add a small amount of spherical noise to the gradients, the
speed-up not only disappears, but gradient descent begins to outperform the accelerated
method, which begins to diverge after a large number of iterations.

The preceding example is not wickedly pathological in any sense. Instead, it is
illustrative of a much broader phenomenon. Work by Devolder, Glineur and Nes-
terov [DGN14] shows there is a fundamental trade-off between acceleration and robust-
ness, in a sense made precise below.

First, define the notion of an inexact gradient oracle. Recall for a β-smooth convex
function f and any x, y ∈ Ω,

0 6 f (x)− (f (y) + 〈∇ f (y), x− y〉) 6 β

2
‖x− y‖2. (11)

For any y ∈ Ω, an exact first-order oracle then returns a pair (f (y), g(y)) = (f (y),∇ f (y))
that satisfies (11) exactly for every x ∈ Ω. An inexact oracle, returns a pair so that (11)
holds up to some slack δ.

Definition 9.4 (Inexact oracle). Let δ > 0. For any y ∈ Ω, a δ-inexact oracle returns a
pair (fδ(y), gδ(y)) such that for every x ∈ Ω,

0 6 f (x)− (f (y) + 〈∇ f (y), x− y〉) 6 β

2
‖x− y‖2 + δ .

50

0 20 40 60 80 100
iterate

10 2

10 1

suboptimality (dimension = 100, noise = 0.1, trials = 100)
gd
nag
noisy gd
noisy nag

Figure 10: The optimality gap for iterations of gradient descent and Nesterov accelerated
gradient descent applied to the worst function in the world with dimension n = 100. Notice with
exact oracle gradients, acceleration helps significantly. However, when adding uniform spherical
random noise with radius δ = 0.1 to the gradient, stochastic gradient descent remains robust
while stochastic accelerated gradient accumulates error. The stochastic results are averaged over
100 trials.

Consider running gradient descent with a δ-inexact oracle. Devolder et al. [DGN14]
show, after t steps,

f (xt)− f (x?) 6
βR2

2t
+ δ.

Comparing this rate with Table 3, the plain gradient method is not affected by the
inexact oracle and doesn’t accumulate errors. On the other hand, if the accelerated
gradient method is run with a δ-inexact oracle, then after t steps,

f (xt)− f (x?) 6
4βR2

(t + 1)2 +
1
3
(t + 3)δ.

In other words, the accelerated gradient method accumulates errors linearly with the
number of steps! Moreover, this slack is not an artifact of the analysis. Any black-box
method must accumulate errors if it is accelerated in the exact case, as the following
theorem makes precise.

Theorem 9.5 (Theorem 6 in [DGN14]). Consider a black-box method with convergence rate
O
(

βR2

tp

)
when using an exact oracle. With a δ-inexact oracle, suppose the algorithm achieves a

51

rate

f (xt)− f (x?) 6 O
(

βR2

tp

)
+ O (tqδ) , (12)

then q > p− 1.

In particular, for any accelerated method has p > 1, and consequently q > 1 so the
method accumulates at least O(tp−1δ) error with the number of iterations.

52

Part III

Stochastic optimization

10 Stochastic optimization

The goal in stochastic optimization is to minimize functions of the form

f (x) = E
z∼D

g(x, z)

which have stochastic component given by a distribution D. In the case where the
distribution has finite support, the function can be written as

f (x) =
1
m

m

∑
i=1

fi(x) .

To solve these kinds of problems, we examine the stochastic gradient descent method
and some if its many applications.

10.1 The stochastic gradient method

Following Robbins-Monro [RM51], we define the stochastic gradient method as follows.

Definition 10.1 (Stochastic gradient method). The stochastic gradient method starts
from a point x0 ∈ Ω and proceeds according to the update rule

xt+1 = xt − ηt∇ fit(xt)

where it ∈ {1, . . . , m} is either selected at random at each step, or cycled through a
random permutation of {1, . . . , m}.

Either of the two methods for selecting it above, lead to the fact that

E∇ fit(x) = ∇ f (x)

This is also true when f (x) = E g(x, z) and at each step we update according to∇g(x, z)
for randomly drawn z ∼ D.

10.1.1 Sanity check

Let us check that on a simple problem that the stochastic gradient descent yields the
optimum. Let p1, . . . , pm ∈ Rn, and define f : Rn → R+:

∀x ∈ Rn, f (x) =
1

2m

m

∑
i=1
‖x− pi‖2

2

53

Note that here fi(x) = 1
2‖x− pi‖2

2 and ∇ fi(x) = x− pi. Moreover,

x∗ = argmin
x∈Rd

f (x) =
1
m

m

∑
i=1

pi

Now, run SGM with ηt =
1
t in cyclic order i.e. it = t and x0 = 0:

x0 = 0

x1 = 0− 1
1
(0− p1) = p1

x2 = p1 −
1
2
(p1 − p2) =

p1 + p2

2
...

xn =
1
m

m

∑
i=1

pi = x∗

10.2 The Perceptron

The New York Times wrote in 1958 that the Perceptron [Ros58] was:

the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence.

So, let’s see.

Definition 10.2 (Perceptron). Given labeled points ((x1, y1), . . . , (xm, ym)) ∈ (Rn ×
{−1, 1})m, and and initial point w0 ∈ Rn, the Perceptron is the following algorithm. For
it ∈ {1, . . . , m} selected uniformly at random,

wt+1 = wt(1− γ) + η

{
yit xit if yit〈wt, xit〉 < 1
0 otherwise

Reverse-engineering the algorithm, the Perceptron is equivalent to running the SGM
on the Support Vector Machine (SVM) objective function.

Definition 10.3 (SVM). Given labeled points ((x1, y1), . . . , (xm, ym)) ∈ (Rn×{−1, 1})m,
the SVM objective function is:

f (w) =
1
n

m

∑
i=1

max(1− yi〈w, xi〉, 0) + λ‖w‖2
2

The loss function max(1− z, 0) is known as the Hinge Loss. The extra term λ‖w‖2
2 is

known as the regularization term.

54

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html

10.3 Empirical risk minimization

We have two spaces of objects X and Y , where we think of X as the space of instances
or examples, and Y is a the set of labels or classes.

Our goal is to learn a function h : X → Y which outputs an object y ∈ Y , given
x ∈ X . Assume there is a joint distribution D over the space X ×Y and the training set
consists of m instances S = ((x1, y1), . . . , (xm, ym)) drawn i.i.d. from D.

We also define a non-negative real-valued loss function `(y′, y) to measure the
difference between the prediction y′ and the true outcome y.

Definition 10.4. The risk of a function h : X → Y is defined as

R[h] = E(x,y)∼D`(h(x), y) .

The ultimate goal of a learning algorithm is to find h∗ among a class of functionsH
that minimizes R[h]:

h∗ ∈ arg min
h∈H

R[h]

In general, the risk R[h] cannot be computed because the joint distribution is unknown.
Therefore, we instead minimize a proxy objective known as empirical risk and defined

by averaging the loss function over the training set:

RS[h] =
1
m

m

∑
i=1

`(h(xi), yi)

An empirical risk minimizer is any point h∗ ∈ arg minh∈H RS[h].
The stochastic gradient method can be thought of as minimizing the risk directly,

if each example is only used once. In cases where we make multiple passes over the
training set, it is better to think of it as minimizing the empirical risk, which can give
different solutions than minimizing the risk. We’ll develop tools to relate risk and
empirical risk in the next lecture.

10.4 Online learning

An interesting variant of this learning setup is called online learning. It arises when we
do not have a set of training data, but rather must make decisions one-by-one.

Taking advice from experts. Imagine we have access to the predictions of n experts.
We start from an initial distribution over experts, given by weights w1 ∈ ∆n = {w ∈
Rn : ∑i wi = 1, wi > 0}.

At each step t = 1, . . . , T:

• we randomly choose an expert according to wt

55

• nature deals us a loss function ft ∈ [−1, 1]n, specifying for each expert i the
loss ft[i] incurred by the prediction of expert i at time t.

• we incur the expected loss Ei∼wt ft[i] = 〈wt, ft〉.

• we get to update our distribution to from wt to wt+1.

At the end of the day, we measure how well we performed relative to the best fixed
distribution over experts in hindsight. This is called regret:

R =
T

∑
t=1
〈wt, ft〉 − min

w∈∆n

T

∑
t=1
〈w, ft〉

This is a relative benchmark. Small regret does not say that the loss is necessarily small.
It only says that had we played the same strategy at all steps, we couldn’t have done
much better even with the benefit of hindsight.

10.5 Multiplicative weights update

Perhaps the most important online learning algorithm is the multiplicative weights update.
Starting from the uniform distribution w1, proceed according to the following simple
update rule for t > 1,

vt[i] = wt−1[i]e−η ft[i] (exponential weights update)
wt = vt/(∑i vt[i]) (normalize)

The question is how do we bound the regret of the multiplicative weights update? We
could do a direct analysis, but instead we’ll relate multiplicative weights to gradient
descent and use the convergence guarantees we already know.

Specifically, we will interpret multiplicative weights as an instance of mirror descent.
Recall that mirror descent requires a mirror map φ : Ω → R over a domain Ω ∈ Rn

where φ is strongly convex and continuously differentiable.
The associated projection is

Πφ
Ω(y) = argmin

x∈Ω
Dφ(x, y)

where Dφ(x, y) is Bregman divergence.

Definition 10.5. The Bregman divergence measures how good the first order approxi-
mation of the function φ is:

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)ᵀ(x− y)

56

The mirror descent update rule is:

∇φ(yt+1) = ∇φ(xt)− ηgt

xt+1 = Πφ
Ω(yt+1)

where gt ∈ ∂ f (xt). In the first homework, we proved the following results.

Theorem 10.6. Let ‖ · ‖ be an arbitrary norm and suppose that φ is α-strongly convex w.r.t. ‖ · ‖
on Ω. Suppose that ft is L-lipschitz w.r.t. ‖ · ‖. Then, we have

1
T

T

∑
t=1

ft(xt) 6
Dφ(x∗, x0)

Tη
+ η

L2

2α
.

Multiplicative weights are an instance of the mirror descent where φ(w) = ∑m
i=1 wi log(wi)

is the negative entropy function. We have that

∇φ(w) = 1 + log(w),

where the logarithm is elementwise. The update rule for mirror descent is

∇φ(vt+1) = ∇φ(wt)− ηt ft ,

which implies that
vt+1 = wte−ηt ft

and thus recovers the multiplicative weights update.
Now comes the projection step. The Bregman divergence corresponding to φ is

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)T(x− y)
= ∑

i
xi log(xi/yi)−∑

i
xi + ∑

i
yi ,

which we recognize as the relative entropy or Kullback-Leibler divergence over the
probability simplex. We thus choose the domain Ω to be the probability simplex
Ω = {w ∈ Rn | ∑i wi = 1, wi > 0}. The projection

Πφ
Ω(y) = argmin

x∈Ω
Dφ(x, y)

turns out to just correspond to the normalization step in the update rule of the multi-
plicative weights algorithm.

57

Concrete rate of convergence. To get a concrete rate of convergence from the preced-
ing theorem, we still need to determine what value of the strong convexity constant α

we get in our setting. Here, we choose the norm to be the `∞-norm. It follows from
Pinsker’s inequality that φ is 1/2-strongly convex with respect to the `∞-norm. More-
over, in the `∞-norm all gradients are bounded by 1, since the loss ranges in [1, 1]. Finally,
the relative entropy between the initial uniform distribution any any other distribution
is at most log(n). Putting these facts together and balancing the step size η, we get the
normalized regret bound

O

(√
log n

T

)
.

In particular, this shows that the normalized regret of the multiplicative update rule is
vanishing over time.

11 Learning, stability, regularization

In this lecture we take a look at machine learning, and empirical risk minimization in
particular. We define the distribution of our data as D over X×Y, where X ⊆ Rd and
Y is some discrete set of class labels. For instance, in a binary classification tasks with
two labels Y might be Y = {−1, 1}.

• A “model” is specified by a set of parameters w ∈ Ω ⊆ Rn

• The “loss function” is denoted by ` : Ω× (X×Y)→ R, note that `(w, z) gives the
loss of model w on instance z.

• The risk of a model is defined as R(w) = Ez∼D[`(w, z)].

Our goal is to find a model w that minimizes R(w).
One way to accomplish this is to use stochastic optimization directly on the popula-

tion objective:
wt+1 = wt − η∇`(wt, zt) z ∼ D

When given a finite data set, however, it is usually effective to make multiple passes
over the data. In this case, the stochastic gradient method may no longer optimize risk
directly.

11.1 Empirical risk and generalization error

Consider a finite sample Suppose S = ((x1, y1),, (xm, ym)) ∈ (X × Y)m, where
zi = (xi, yi) represents the i-th labeled example. The empirical risk is defined as

RS(w) =
1
m

m

∑
i=1

`(w, zi) .

58

Empirical risk minimization is commonly used as a proxy for minimizing the unknown
population risk. But how good is this proxy? Ideally, we would like that the point w
that we find via empirical risk minimization has RS(w) ≈ R(w). However, this may not
be the case, since the risk R(w) captures loss on unseen example, while the empirical
risk RS(w) captures loss on seen examples. Generally, we expect to do much better on
seen examples than unseen examples. This performance gap between seen and unseen
examples is what we call generalization error.

Definition 11.1 (Generalization error). We define the generalization error of a model w as

εgen(w) = R(w)− Rs(w) .

Note the following tautological, yet important identity:

R(w) = RS(w) + εgen(w) (13)

What this shows in particular is that if we manage to make the empirical risk RS(w)
small through optimization, then all that remains to worry about is generalization error.

So, how can we bound generalization error? The fundamental relationship we’ll
establish in this lecture is that generalization error equals an algorithmic robustness
property that we call algorithmic stability. Intuitively, algorithmic stability measures how
sensitive an algorithm is to changes in a single training example.

11.2 Algorithmic stability

To introduce the idea of stability, we choose two independent samples S = (z1, ..., zm)
and S′ = (z′1, ..., z′m), each drawn independently and identically from D. Here, the
second sample S′ is called a ghost sample and mainly serves an analytical purpose.

Correlating the two samples in a single point, we introduce the hybrid sample S(i)

as:
S(i) = (z1, ..., zi−1, z′i, zi+1, ... , zm)

Note that here the i-th example comes from S′, while all others come from S.
With this notation at hand, we can introduce a notion of average stability.

Definition 11.2 (Average stability). The average stability of an algorithm A : (X×Y)m →
Ω:

∆(A) = E
S,S′

[
1
m

m

∑
i=1

(
`(A(S), z′i)− `(A(S(i)), z′i)

)]
This definition can be interpreted as comparing the performance of the algorithm

on an unseen versus a seen example. This is the intuition why average stability, in fact,
equals generalization error.

Theorem 11.3.
E[εgen(A)] = ∆(A)

59

Proof. Note that

E[εgen(A)] = E [R(A(S))− RS(A(S))] ,

E [RS(A(S))]] = E

[
1
m

m

∑
i=1

`(A(S), zi)

]
,

E[R(A(S))] = E

[
1
m

m

∑
i=1

`(A(S), z′i)

]
.

At the same time, since zi and z′i are identically distributed and independent of the other
examples, we have

E `(A(S), zi) = E `(A(S(i)), z′i) .

Applying this identity to each term in the empirical risk above, and comparing with the
definition of ∆(A), we conclude E[R(A(S))− RS(A(S))] = ∆(A) �

11.2.1 Uniform stability

While average stability gave us an exact characterization of generalization error, it can
be hard to work with the expectation over S and S′. Uniform stability replaces the
averages by suprema, leading to a stronger but useful notion [BE02].

Definition 11.4 (Uniform stability). The uniform stability of an algorithm A is defined
as

∆sup(A) = sup
S,S′∈(X×Y)m

sup
i∈[m]

|`(A(S), z′i)− `(A(S(i), z′i)|

Since uniform stability upper bounds average stability, we know that uniform
stability upper bounds generalization error (in expectation).

Corollary 11.5. E[εgen(A)] 6 ∆sup(A)

This corollary turns out to be surprisingly useful since many algorithms are uni-
formly stable. For instance, strongly convex loss function is sufficient for stability, and
hence generalization as we will show next.

11.3 Stability of empirical risk minimization

The next theorem due to [SSSSS10] shows that empirical risk minimization of a strongly
convex loss function is uniformly stable.

Theorem 11.6. Assume `(w, z) is α-strongly convex over the domain Ω and L-Lipschitz. Let
ŵS = arg minw∈Ω

1
m ∑m

i=1 `(w, zi) denote the empirical risk minimizer (ERM). Then, ERM
satisfies

∆sup(ERM) 6
4L2

αm
.

60

An interesting point is that there is no explicit reference to the complexity of the
class. In the following we present the proof.

Proof. Denote by ŵS the empirical risk minimizer on a sample S. Fix arbitrary samples
S, S′ of size m and an index i ∈ [m]. We need to show that

|(`(ŵS(i) , z′i)− `(ŵS, z′i))| 6
4L2

αm
.

On one hand, by strong convexity we know that

RS(ŵS(i))− RS(ŵS) >
α

2
‖ŵS − ŵS(i)‖2 .

On the other hand,

RS(ŵS(i))− RS(ŵS)

=
1
m
(`(ŵS(i) , zi)− `(ŵS, zi)) +

1
m ∑

i 6=j
(`(ŵS(i) , zj)− `(ŵS, zj))

=
1
m
(`(ŵS(i) , zi)− `(ŵS, zi)) +

1
m
(`(ŵS, z′i)− `(ŵS(i) , z′i)) +

(
RS(i)(ŵS(i))− RS(i)(ŵS)

)
6

1
m
|`(ŵS(i) , zi)− `(ŵS, zi)|+

1
m
|(`(ŵS, z′i)− `(ŵS(i) , z′i))|

6
2L
m
‖ŵS(i) − ŵS‖ .

Here, we used that
RS(i)(ŵS(i))− RS(i)(ŵS)) 6 0

and the fact that ` is L−lipschitz.
Putting it all together ‖ŵS(i) − ŵS‖ 6 4L

αm . Then by the Lipschitz condition we have
that

1
m
|(`(ŵS(i) , z′i)− `(ŵS, z′i))| 6 L‖ŵS(i) − ŵS‖ 6

4L2

αm
.

Hence, ∆sup(ERM) 6 4L2

αm .
�

11.4 Regularization

Not all the ERM problems are strongly convex. However, if the problem is convex we
can consider the regularized objective

r(w, z) = `(w, z) +
α

2
‖w‖2

61

The regularized loss r(w, z) is α−strongly convex. The last term is named `2-
regularization, weight decay or Tikhonov regularization depending on the field you
work on. Therefore, we now have the following chain of implications:

regularization⇒ strong convexity⇒ uniform stability⇒ generalization

We can also show that solving the regularized objective also solves the unregularized
objective. Assume that Ω ⊆ B2(R), by setting α ≈ L2

R2m we can show that the minimizer
of the regularized risk also minimizes the unregularized risk up to error O(LR√

m). More-

over, by the previous theorem the generalized error will also be O(LR√
m). See Theorem 3

in [SSSSS10] for details.

11.5 Implicit regularization

In implicit regularization the algorithm itself regularizes the objective, instead of explic-
itly adding a regularization term. The following theorem describes the regularization
effect of the Stochastic Gradient Method (SGM).

Theorem 11.7. Assume `(·, z) is convex, β-smooth and L-Lipschitz. If we run SGM for T
steps, then the algorithm has uniform stability

∆sup(SGMT) 6
2L2

m

T

∑
t=1

ηt

Note for ηt ≈ 1
m then ∆sup(SGMT) = O(log(T)

m), and for ηt ≈ 1√
m and T = O(m)

then ∆sup(SGMT) = O(1√
m). See [HRS15] for proof.

12 Coordinate descent

There are many classes of functions for which it is very cheap to compute directional
derivatives along the standard basis vectors ei, i ∈ [n]. For example,

f (x) = ‖x‖2 or f (x) = ‖x‖1 (14)

This is especially true of common regularizers, which often take the form

R(x) =
n

∑
i=1

Ri(xi) . (15)

More generally, many objectives and regularizes exhibit “group sparsity”; that is,

R(x) =
m

∑
j=1

Rj(xSj) (16)

where each Sj, j ∈ [m] is a subset of [n], and similarly for f (x). Examples of functions
with block decompositions and group sparsity include:

62

x1 x2 x3 x4 x5

variable

f1 f2 f3 f4

function

Figure 11: Example of the bipartite graph between component functions fi, i ∈ [m] and variables
xj, j ∈ [n] induced by the group sparsity structure of a function f : Rn → Rm. An edge between
fi and xj conveys that the ith component function depends on the jth coordinate of the input.

1. Group sparsity penalties;

2. Regularizes of the form R(U>x), where R is coordinate-separable, and U has
sparse columns and so (U>x) = u>i x depends only on the nonzero entries of Ui;

3. Neural networks, where the gradients with respect to some weights can be com-
puted “locally”; and

4. ERM problems of the form

f (x) :=
n

∑
i=1

φi(〈w(i), x〉) (17)

where φi : R→ R, and w(i) is zero except in a few coordinates.

12.1 Coordinate descent

Denote ∂i f = ∂ f
xi

. For each round t = 1, 2, . . . , the coordinate descent algorithm chooses
an index it ∈ [n], and computes

xt+1 = xt − ηt∂it f (xt) · eit . (18)

This algorithm is a special case of stochastic gradient descent. For

E[xt+1|xt] = xt − ηt E[∂it f (xt) · eit] (19)

= xt −
ηt

n

n

∑
i=1

∂i f (xt) · ei (20)

= xt − ηt∇ f (xt) . (21)

63

Recall the bound for SGD: If E[gt] = ∇ f (xt), then SGD with step size η = 1
BR satisfies

E[f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6
2BR√

T
(22)

where R2 is given by maxx∈Ω ‖x− x1‖2
2 and B = maxt E[‖gt‖2

2]. In particular, if we set
gt = n∂xit

f (xt) · eit , we compute that

E[‖gt‖2
2] =

1
n

n

∑
i=1
‖n · ∂xi f (xt) · ei‖2

2 = n‖∇ f (xt)‖2
2 . (23)

If we assume that f is L-Lipschitz, we additionally have that E[‖gt‖2] 6 nL2. This
implies the first result:

Proposition 12.1. Let f be convex and L-Lipschitz on Rn. Then coordinate descent with step
size η = 1

nR has convergence rate

E[f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2LR
√

n/T (24)

12.2 Importance sampling

In the above, we decided on using the uniform distribution to sample a coordinate. But
suppose we have more fine-grained information. In particular, what if we knew that
we could bound supx∈Ω ‖∇ f (x)i‖2 6 Li? An alternative might be to sample in a way
to take Li into account. This motivates the “importance sampled” estimator of ∇ f (x),
given by

gt =
1
pit
· ∂it f (xt) where it ∼ Cat(p1, . . . , pn) . (25)

Note then that E[gt] = ∇ f (xt), but

E[‖gt‖2
2] =

n

∑
i=1

(∂it f (xt))
2/p2

i (26)

6
n

∑
i=1

L2
i /p2

i (27)

In this case, we can get rates

E[f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2R
√

1/T ·
√

n

∑
i=1

L2
i /p2

i (28)

In many cases, if the values of Li are heterogeneous, we can optimize the values of pi.

64

12.3 Importance sampling for smooth coordinate descent

In this section, we consider coordinate descent with a biased estimator of the gradient.
Suppose that we have, for x ∈ Rn and α ∈ R, the inequality

|∂xi f (x)− ∂xi f (x + αei)| 6 βi|α| (29)

where βi are possibly heterogeneous. Note that if that f is twice-continuously differen-
tiable, the above condition is equivalent to ∇2

ii f (x) 6 βi, or diag(∇2 f (x)) � diag(β).
Define the distribution pγ via

pγ
i =

β
γ
i

∑n
j=1 β

γ
j

(30)

We consider gradient descent with the rule called RCD(γ)

xt+1 = xt −
1

βit
· ∂it(xt) · eit , where it ∼ pγ (31)

Note that as γ → ∞, coordinates with larger values of βi will be selected more often.
Also note that this is not generally equivalent to SGD, because

E

[
1

βit
∂it(xt)ei

]
=

1
∑n

j=1 β
γ
j
·

n

∑
i=1

β
γ−1
i ∂i f (xt)ei =

1
∑n

j=1 β
γ
j
· ∇ f (xt) ◦ (β

γ−1
i)i∈[n] (32)

which is only a scaled version of ∇ f (xt) when γ = 1. Still, we can prove the following
theorem:

Theorem 12.2. Define the weighted norms

‖x‖2
[γ] :=

n

∑
i=1

x2
i β

γ
i and ‖x‖∗2[γ] :=

n

∑
i=1

x2
i β
−γ
i (33)

and note that the norms are dual to one another. We then have that the rule RCD(γ) produces
iterates satisfying

E[f (xt)− arg min
x∈Rn

f (x)] 6
2R2

1−γ ·∑n
i=1 β

γ
i

t− 1
, (34)

where R2
1−γ = supx∈Rn : f (x)6 f (x1)

‖x− x∗‖[1−γ].

Proof. Recall the inequality that for a general βg-smooth convex function g, one has that

g
(

u− 1
βg
∇g(u)

)
− g(u) 6 − 1

2βg
‖∇g‖2 (35)

65

Hence, considering the functions gi(u; x) = f (x + uei), we see that ∂i f (x) = g′i(u; x),
and thus gi is βi smooth. Hence, we have

f
(

x− 1
βi
∇ f (x)ei

)
− f (x) = gi(0−

1
βg

g′i(0; x))− g(0; x) 6 −g′i(u; x)2

2βi
= −∂i f (x)2

2βi
.(36)

Hence, if i pγ, we have

E[f (x− 1
βi

∂i f (x)ei)− f (x)] 6
n

∑
i=1

pγ
i · −

∂i f (x)2

2βi
(37)

= − 1
2 ∑n

i=1 β
γ
i

n

∑
i=1

βγ−1∂i f (x)2 (38)

= −
‖∇ f (x)‖∗2[1−γ])

2 ∑n
i=1 β

γ
i

(39)

Hence, if we define δt = E[f (xt)− f (x∗)], we have that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(40)

Moreover, with probability 1, one also has that f (xt+1) 6 f (xt), by the above. We now
continue with the regular proof of smooth gradient descent. Note that

δt 6 ∇ f (xt)
>(xt − x∗)

6 ‖∇ f (xt)‖∗[1−γ]‖xt − x∗‖[1−γ]

6 R1−γ‖∇ f (xt)‖∗[1−γ] .

Putting these things together implies that

δt+1 − δt 6 −
δ2

t
2R2

1−γ ∑n
i=1 β

γ
i

(41)

Recall that this was the recursion we used to prove convergence in the non-stochastic
case. �

Theorem 12.3. If f is in addition α-strongly convex w.r.t to ‖ · ‖[1−γ], then we get

E[f (xt+1)− arg min
x∈Rn

f (x)] 6

(
1− α

∑n
i=1 β

γ
i

)t

(f (x1)− f (x∗)) . (42)

Proof. We need the following lemma:

Lemma 12.4. Let f be an α-strongly convex function w.r.t to a norm ‖ · ‖. Then, f (x) −
f (x∗) 6 1

2α‖∇ f (x)‖2
∗ .

66

Proof.

f (x)− f (y) 6 ∇ f (x)>(x− y)− α

2
‖x− y‖2

2

6 ‖∇ f (x)‖∗‖x− y‖2 − α

2
‖x− y‖2

2

6 max
t
‖∇ f (x)‖∗t−

α

2
t2

=
1

2α
‖∇ f (x)‖2

∗ .

�

Lemma 12.4 shows that

‖∇ f (xs)‖∗2[1−γ] > 2αδs .

On the other hand, Theorem 12.2 showed that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(43)

Combining these two, we get

δt+1 − δt 6 − αδt

∑n
i=1 β

γ
i

(44)

δt+1 6 δt

(
1− α

∑n
i=1 β

γ
i

)
. (45)

Applying the above inequality recursively and recalling that δt = E[f (xt) − f (x∗)]
gives the result.

�

12.4 Random coordinate vs. stochastic gradient descent

What’s surprising is that RCD(γ) is a descent method, despite being random. This is
not true of normal SGD. But when does RCD(γ) actually do better? If γ = 1, the savings
are proportional to the ratio of ∑i=1 βi/β · (Tcoord/Tgrad). When f is twice differentiable,
this is the ratio of

tr(maxx∇2 f (x))
‖maxx∇2 f (x)‖op

(Tcoord/Tgrad) (46)

67

12.5 Other extensions to coordinate descent

1. Non-Stochastic, Cyclic SGD

2. Sampling with Replacement

3. Strongly Convex + Smooth!?

4. Strongly Convex (generalize SGD)

5. Acceleration? See [TVW+17]

68

Part IV

Dual methods

13 Duality theory

These notes are based on earlier lecture notes by Benjamin Recht and Ashia Wilson.

13.1 Optimality conditions for equality constrained optimization

Recall that x? minimizes a smooth, convex function f over a closed convex set Ω if and
only if

〈∇ f (x?), x− x?〉 > 0 ∀x ∈ Ω . (47)

Let’s specialize this to the special case where Ω is an affine set. Let A be an n× d
matrix with rank n such that Ω = {x : Ax = b} for some b ∈ Rn. Note that we can
always assume that rank(A) = n or else we would have redundant constraints. We
could also parameterize Ω as Ω = {x0 + v : Av = 0} for any x0 ∈ Ω. Then using (47),
we have

〈∇ f (x?), x− x?〉 > 0 ∀x ∈ Ω if and only if 〈∇ f (x?), u〉 > 0 ∀u ∈ ker(A) .

But since ker A is a subspace, this can hold if and only if 〈∇ f (x?), u〉 = 0 for all
u ∈ ker(A). In particular, this means, ∇ f (x?) must lie in ker(A)⊥. Since we have that
Rd = ker(A)⊕ Im(AT), this means that ∇ f (x?) = ATλ for some λ ∈ Rn.

To summarize, this means that x? is optimal for f over Ω if and only if there
∃λ? ∈ Rm such that {

∇ f (x?) + ATλ? = 0
Ax? = b

These optimality conditions are known as the Karush-Kuhn-Tucker Conditions or KKT
Conditions.

As an example, consider the equality constrained quadratic optimization problem

minimize 1
2 xTQx + cTx

subject to Ax = b

The KKT conditions can be expressed in matrix form[
Q AT

A 0

] [
x
λ

]
=

[
c
b

]
.

69

13.2 Nonlinear constraints

Let Ω be a closed convex set. Let’s define the tangent cone of Ω at x as

TΩ(x) = cone{z− x : z ∈ Ω}

The tangent cone is the set of all directions that can move from x and remain in Ω. We
can also define the normal cone of Ω at x to be the set

NΩ(x) = TΩ(x)◦ = {u : 〈u, v〉 6 0, ∀v ∈ TΩ(x)}

C
C

Figure 12: Black set is C, red set is TC(x), blue set is Nc(x)

Suppose we want to minimize a continuously differentiable function f over the
intersection of a closed convex set Ω and an affine set A = {x : Ax = b}

minimize f (x)
subject to x ∈ Ω

Ax = b
(48)

where A is again a full rank n× d matrix. In this section, we will generalize (47) to show

Proposition 13.1. x? is optimal for (48) if and only if there exists λ? ∈ Rn such that{
−∇[f (x?) + A>λ?] ∈ NΩ(x?)
x? ∈ Ω ∩A

.

70

The key to our analysis here will be to rely on convex analytic arguments. Note that
when there is no equality constraint Ax = b, our constrained optimality condition is
completely equivalent to the assertion

−∇ f (x?) ∈ NΩ(x?) . (49)

Thus, to prove Proposition 13.1, it will suffice for us to understand the normal cone
of the set Ω ∩A at the point x?. To obtain a reasonable characterization, we begin by
proving a general fact.

Proposition 13.2. Let Ω ⊆ Rd be a closed convex set. Let A denote the affine set {x : Ax =
b} for some A ∈ Rn×d and b ∈ Rn. Suppose that the set ri(Ω) ∩A is non-empty. Then for
any x ∈ Ω ∩A,

NΩ∩A(x) = NΩ(x) + {ATλ : λ ∈ Rn} .

Proof. The “⊇” assertion is straightforward. To see this, suppose z ∈ Ω ∩A and note
that z − x ∈ null(A) so that (z − x)>A>λ = λ>A(z − x) = 0 for all λ ∈ Rn. If
u ∈ NΩ(x), then (z− x)>u 6 0, so for λ ∈ Rn, we have

〈z− x, u + A>λ〉 = 〈z− x, u〉 6 0

implying that u + A>λ ∈ NΩ∩A(x). For the reverse inclusion, let v ∈ NΩ∩A(x). Then
we have

v>(z− x) 6 0 for all z ∈ Ω ∩A
Now define the sets

C1 =
{
(y, µ) ∈ Rd+1 : y = z− x, z ∈ Ω, µ 6 v>y

}
C2 =

{
(y, µ) ∈ Rd+1 : y ∈ ker(A), µ = 0

}
.

Note that ri(C1) ∩ C2 = ∅ because otherwise there would exist a (ŷ, µ̂) such that

v>ŷ > µ̂ = 0

and ŷ ∈ TΩ∩A(x). This would contradict our assumption that v ∈ NΩ∩A(x). Since their
intersection is empty, we can properly separate ri(C1) from C2. Indeed, since C2 is a
subspace and C1 has nonempty relative interior, there must be a (w, γ) such that

inf
(y,µ)∈C1

{w>y + γµ} < sup
(y,µ)∈C1

{w>y + γµ} 6 0

while
w>u = 0 for all u ∈ ker(A).

In particular, this means that w = ATλ for some λ ∈ Rn. Now, γ must be nonnegative,
as otherwise,

sup
(y,µ)∈C1

{w>y + γµ} = ∞

71

(which can be seen by letting µ tend to negative infinity). If γ = 0, then

sup
y∈C1

w>y 6 0

but the set {y : wTy = 0} does not contain the set {z− x : z ∈ Ω} as the infimum is
strictly negative. This means that the relative interior of Ω− {x} cannot intersect the
kernel of A which contradicts our assumptions. Thus, we can conclude that γ is strictly
positive. By homogeneity, we may as well assume that γ = 1.

To complete the argument, note that we now have

(w + v)>(z− x) 6 0 for all z ∈ Ω.

This means that v + w ∈ NΩ(x) and we have already shown that w = ATλ. Thus,

v = (v + w)− w ∈ NΩ(x) +NA(x) .

�

Let’s now translate the consequence of this proposition for our problem. Using (49)
and Proposition 13.2, we have that x? is optimal for

min f (x) s.t x ∈ Ω, Ax = b

if and only if Ax? = b and there exists a λ ∈ Rn such that

−∇[f (x∗) + A>λ] ∈ NΩ(x?) ∀x ∈ Ω .

This reduction is not immediately useful to us, as it doesn’t provide an algorithmic
approach to solving the constrained optimization problem. However, it will form the
basis of our dive into duality.

13.3 Duality

Duality lets us associate to any constrained optimization problem, a concave maximiza-
tion problem whose solutions lower bound the optimal value of the original problem.
In particular, under mild assumptions, we will show that one can solve the primal
problem by first solving the dual problem.

We’ll continue to focus on the standard primal problem for an equality constrained
optimization problem:

minimize f (x)
subject to x ∈ Ω

Ax = b
(50)

Here, assume that Ω is a closed convex set, f is differentiable, and A is full rank.

72

The key behind duality (here, Lagrangian duality) is that problem (50) is equivalent
to

min
x∈Ω

max
λ∈Rn

f (x) + λT(Ax− b)

To see this, just note that if Ax 6= b, then the max with respect to λ is infinite. On the
other hand, if Ax = b is feasible, then the max with respect to λ is equal to f (x).

The dual problem associated with (50) is

max
λ∈Rn

min
x∈Ω

f (x) + λT(Ax− b)

Note that the function

q(λ) := min
x∈Ω

f (x) + λT(Ax− b)

is always a concave function as it is a minimum of linear functions. Hence the dual
problem is a concave maximization problem, regardless of what form f and Ω take. We
now show that it always lower bounds the primal problem.

13.4 Weak duality

Proposition 13.3. For any function ϕ(x, z),

min
x

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z) .

Proof. The proof is essentially tautological. Note that we always have

ϕ(x, z) > min
x

ϕ(x, z)

Taking the maximization with respect to the second argument verifies that

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z) ∀x .

Now, minimizing the left hand side with respect to x proves

min
x

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z)

which is precisely our assertion. �

13.5 Strong duality

For convex optimization problems, we can prove a considerably stronger result. Namely,
that the primal and dual problems attain the same optimal value. And, moreover, that
if we know a dual optimal solution, we can extract a primal optimal solution from a
simpler optimization problem.

73

Theorem 13.4 (Strong Duality).

1. If ∃z ∈ relint(Ω) that also satisfies our equality constraint, and the primal problem has
an optimal solution, then the dual has an optimal solution and the primal and dual values
are equal

2. In order for x? to be optimal for the primal and λ? optimal for the dual, it is necessary and
sufficient that Ax? = b , x? ∈ Ω and

x? ∈ arg min
x∈Ω

L(x, λ?) = f (x) + λ?
T(Ax− b)

Proof. For all λ and all feasible x

q(λ) 6 f (x) + λ(Ax− b) = f (x)

where the second equality holds because Ax = b.
Now by Proposition 13.1, x? is optimal if and only if there exists a λ? such that

〈∇ f (x?) + ATλ?, x− x?〉 > 0 ∀x ∈ Ω

and Ax? = b. Note that this condition means that x? minimizes L(x, λ?) over Ω.
By preceding argument, it now follows that

q(λ?) = inf
x∈Ω
L(x, λ?)

= L(x?, λ?)

= f (x?) + λ?
T(Ax? − b) = f (x?)

which completes the proof. �

14 Algorithms using duality

The Lagrangian duality theory from the previous lecture can be used to design im-
proved optimization algorithms which perform the optimization on the dual function.
Oftentimes, passing to the dual can simplify computation or enable parallelization.

14.1 Review

Recall the primal problem

min
x∈Ω

f (x)

s.t. Ax = b

74

The corresponding dual problem is obtained by considering the Lagrangian

L(x, λ) = f (x) + λT(Ax− b)

where λi are called Lagrange multipliers. The dual function is defined as

g(λ) = inf
x∈Ω

L(x, λ)

and the dual problem is
sup

λ∈Rm
g(λ)

Definition 14.1 (Concave functions). A function f is concave ⇐⇒ − f is convex.

Fact 14.2. The dual function is always concave (even if f and Ω are not convex).

Proof. For any x ∈ Ω, L(x, λ) is a linear function of λ so g(λ) is an infimum over a
family of linear functions, hence concave. �

14.2 Dual gradient ascent

Concavity of the dual function g(λ) ensures existence of subgradients, so the subgra-
dient method can be applied to optimize g(λ). The dual gradient ascent algorithm is as
follows:

Start from initial λ0. For all t > 0:

xt = arg inf
x∈Ω

L(x, λt)

λt+1 = λt + η(Axt − b)

This yields the O(1/
√

t) convergence rate obtained by the subgradient method.

14.3 Augmented Lagrangian method / method of multipliers

Whereas dual gradient ascent updates λt+1 by taking a step in a (sub)gradient direction,
a method known as the dual proximal method can be motivated by starting with using
the proximal operator [PB14] as an update rule for iteratively optimizing λ:

λt+1 = proxηtg(λt) = arg sup
λ

inf
x∈Ω

f (x) + λT(Ax− b)︸ ︷︷ ︸
g(λ)

− 1
2ηt
‖λ− λt‖2︸ ︷︷ ︸

proximal term︸ ︷︷ ︸
h(λ)

Notice that this expression includes a proximal term which makes h(λ) strongly
convex.

75

However, this update rule is not always directly useful since it requires optimizing
h(λ) over λ, which may not be available in closed form. Instead, notice that if we can
interchange inf and sup (e.g. strong duality, Sion’s theorem applied when Ω is compact)
then we can rewrite

sup
λ

inf
x∈Ω

f (x) + λT(Ax− b)− 1
2ηt
‖λ− λt‖2 = inf

x∈Ω
sup

λ

f (x) + λT(Ax− b)− 1
2ηt
‖λt − λ‖2

= inf
x∈Ω

f (x) + λT
t (Ax− b) +

ηt

2
‖Ax− b‖2

where the inner sup is optimized in closed-form by λ = λt + ηt(Ax− b). To isolate the
remaining optimization over x, we make the following definition.

Definition 14.3 (Augmented Lagrangian). The augmented Lagrangian is

Lη(x, λ) = f (x) + λT
t (Ax− b) +

ηt

2
‖Ax− b‖2

The augmented Lagrangian method (aka Method of Multipliers) is defined by the
following iterations:

xt = arg inf
x∈Ω

Lηt(x, λt)

λt+1 = λt + ηt(Axt − b)

While the iterations look similar to dual gradient ascent, there are some noteworthy
differences

• The method of multipliers can speed up convergence (e.g. for non-smooth func-
tions), but computing xt may be more difficult due to the additional ηt

2 ‖Ax− b‖2

term in the augmented Lagrangian

• L(x, λt) is convex in x, but Lη(x, λt) is strongly convex in λ (if A is full-rank)

• Convergence at a O(1/t) rate. More precisely, for constant step size η, we can
show show the method of multipliers satisfies

g(λt)− g∗ > −‖λ
∗‖2

2ηt

14.4 Dual decomposition

A major advantage of dual decomposition that it can lead to update rules which are
trivially parallelizable.

76

Suppose we can partition the primal problem into blocks of size (ni)
N
i=1, i.e.

xT = ((x(1))T, · · · , (x(N))T) xi ∈ Rni ,
N

∑
i=1

ni = n

A = [A1| · · · |AN] Ax =
N

∑
i=1

Aix(i)

f (x) =
N

∑
i=1

fi(x(i))

Then the Lagrangian is also separable in x

L(x, λ) =
N

∑
i=1

(
fi(x(i)) + λT Aix(i) −

1
N

λTb
)
=

N

∑
i=1

Li(x(i), λ)

Each term in the sum consists of one non-interacting partition (x(i), Ai, fi), so mini-
mization of each term in the sum can occur in parallel. This leads to the dual decomposition
algorithm:

• In parallel on worker nodes: x(i)t = arg infx(i) Li(x(i), λt)

• On a master node: λt+1 = λt + η(Ax− b)

Example 14.4 (Consensus optimization). Consensus optimization is an application that
comes up in distributed computing which can be solved using dual decomposition.
Given a graph G = (V, E),

min
x ∑

v∈V
fv(xv) : xv = xu ∀(u, v) ∈ E

This problem is separable over v ∈ V, so dual decomposition applies.

Example 14.5 (Network utility maximization). Suppose we have a network with k links,
each with capacity ci. We are interested in allocating N different flows with fixed routes
over these links such that utility is maximized and resource constraints are not exceeded.
Let xi ∈ RN represent the amount of flow i allocated and Ui : R→ R a convex utility
function which returns the amount of utility obtained from having xi amount of flow i.
The optimization problem is

max
x

N

∑
i=1

Ui(xi) : Rx 6 c

where R is a k× N matrix whose (k, i)th entry gives the amount of the capacity of link k
is consumed by flow i.

77

To rewrite the primal problem in standard form (i.e. as a minimization), take nega-
tives:

min
x
−∑

i
Ui(x(i)) : Rx 6 c

The dual problem is then

max
λ>0

min
x ∑

i
−Ui(x(i)) + λT(Rx− c)

where the Rx 6 c primal inequality constraint results in the λ > 0 constraint. The
second term can be rewritten as λT

(
∑i Rixi − 1

N c
)

, showing that the dual splits over i
and hence dual decomposition applies. This leads to a parallel algorithm which each
worker node computes

arg max
xi

Ui(xi)− λTRixi

and the master node computes

λt+1 = [λt + η(Rx− c)]+

We take the positive part because of the λ > 0 constraint.
Aside: In resource allocation problems, the values of the dual variables λ at the

optimal point have an economic interpretation as “prices” to the resources. In this
example, λk should be interpreted as the price per unit of flow over link k.

14.5 ADMM — Alternating direction method of multipliers

While dual decomposition can be used to parallelize dual subgradient ascent, it doesn’t
work with the augmented Lagrangian. This is because the coupling between the decision
variables introduced by the ‖Ax− b‖2 term prevents the augmented Lagrangian from
being separable over x.

The goal of the alternating direction method of multipliers (ADMM) is to obtain
the best of both worlds: we would like both the parallelism offered by the method of
multipliers as well as the faster convergence rate of the augmented Lagrangian. We
will see that similar to dual decomposition, ADMM partitions the decision variables
into two blocks. Also, similar to the method of multipliers, ADMM uses the augmented
Lagrangian Lη(x, z, λt).

Consider a problem of the form

min
x,z

f (x) + g(z) : Ax + Bz 6 c

In other words, we can split the objective and constraints into two blocks x and z.

78

The method of multipliers would jointly optimize the augmented Lagrangian on
both blocks in one single optimization step:

(xt+1, zt+1) = inf
x,z

Lη(x, z, λt)

λt+1 = λt + η(Axt+1 + Bzt+1 − c)

In contrast, ADMM alternates (the “A” in “ADMM”) between optimizing the aug-
mented Lagrangian over x and z:

xt+1 = inf
x

Lη(x, zt, λt)

zt+1 = inf
z

Lη(xt+1, z, λt)

λt+1 = λt + η(Axt+1 + Bzt+1 − c)

Unlike the method of multipliers, this is not parallelizable since xt+1 must be com-
puted before zt+1. Also, convergence guarantees are weaker: rather than getting a
convergence rate we only get an asymptotic convergence guarantee.

Theorem 14.6. Assume

• f , g have a closed, non-empty, convex epigraph

• L0 has a saddle x∗, z∗, λ∗, i.e.:

∀x, z, λ : L0(x∗, z∗, λ) 6 L0(x∗, z∗, λ∗) 6 L(x, z, λ∗)

Then, as t→ ∞, ADMM satisfies

f (xt) + g(zt)→ p∗

λt → λ∗

Aside: Saddles are useful because inf and the sup can be swapped. To see this, note
the saddle condition

L(x∗, λ) 6 L(x∗, λ∗) 6 L(x, λ∗)

implies that

inf
x

sup
λ

L(x, λ) 6 sup
λ

L(x∗, λ)

6 L(x∗, λ∗)

= inf
x

L(x, λ∗)

6 sup
λ

inf
x

L(x, λ)

79

15 Fenchel duality and algorithms

In this section, we introduce the Fenchel conjugate. First, recall that for a real-valued
convex function of a single variable f (x), we call f ∗(p) := supx px− f (x) its Legendre
transform. This is illustrated in figure 13.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

Figure 13: Legendre Transform. The function f ∗(p) is how much we need to vertically shift the
epigraph of f so that the linear function px is tangent to f at x.

The generalization of the Legendre transform to (possibly nonconvex) functions of
multiple variables is the Fenchel conjugate.

Definition 15.1 (Fenchel conjugate). The Fenchel conjugate of f : Rn → R is

f ∗(p) = sup
x
〈p, x〉 − f (x)

We now present several useful facts about the Fenchel conjugate. The proofs are left
as an exercise.

Fact 15.2. f ∗ is convex.

Indeed, f ∗ is the supremum of affine functions and therefore convex. Thus, the
Fenchel conjugate of f is also known as its convex conjugate.

Fact 15.3. f ∗(f ∗(x)) = f if f is convex.

In other words, the Fenchel conjugate is its own inverse for convex functions. Now,
we can also relate the subdifferential of a function to that of its Fenchel conjugate.
Intuitively, observe that 0 ∈ ∂ f ∗(p) ⇐⇒ 0 ∈ p − ∂ f (x) ⇐⇒ p ∈ ∂ f (x). This is
summarized more generally in the following fact.

80

Fact 15.4. The subdifferential of f ∗ at p is ∂ f ∗(p) = {x : p ∈ ∂ f (x)}.

Indeed, ∂ f ∗(0) is the set of minimizers of f .
In the following theorem, we introduce Fenchel duality.

Theorem 15.5 (Fenchel duality). Suppose we have f proper convex, and g proper concave.
Then

min
x

f (x)− g(x) = max
p

g∗(p)− f ∗(p)

where g∗ is the concave conjugate of g, defined as infx〈p, x〉 − g(x).

In the one-dimensional case, we can illustrate Fenchel duality with Figure 14.

−2 −1 0 1 2 3 4

−4

−2

0

2

4

x

y

f
g

Figure 14: Fenchel duality in one dimension

In the minimization problem, we want to find x such that the vertical distance
between f and g at x is as small as possible. In the (dual) maximization problem, we
draw tangents to the graphs of f and g such that the tangent lines have the same slope
p, and we want to find p such that the vertical distance between the tangent lines is as
large as possible. The duality theorem above states that strong duality holds, that is, the
two problems have the same solution.

We can recover Fenchel duality from Lagrangian duality, which we have already
studied. To do so, we need to introduce a constraint to our minimization problem in
Theorem 15.5. A natural reformulation of the problem with a constraint is as follows.

min
x,z

f (x)− g(z) subject to x = z (51)

81

15.1 Deriving the dual problem for empirical risk minimization

In empirical risk minimization, we often want to minimize a function of the following
form:

P(w) =
m

∑
i=1

φi(〈w, xi〉) + R(w) (52)

We can think of w ∈ Rn as the model parameter that we want to optimize over
(in this case it corresponds to picking a hyperplane), and xi as the features of the i-th
example in the training set. φi(·, xi) is the loss function for the i-th training example and
may depend on its label. R(w) is the regularizer, and we typically choose it to be of the
form R(w) = λ

2 ‖w‖2.
The primal problem, minw∈Rn P(w), can be equivalently written as follows:

min
w,z

m

∑
i=1

φi(zi) + R(w) subject to X>w = z (53)

By Lagrangian duality, we know that the dual problem is the following:

max
α∈Rm

min
z,w

m

∑
i=1

φi(zi) + R(w)− α>(X>w− z)

=max
α

min
w,z

m

∑
i=1

φi(zi) + αizi + R(w)− α>X>w

=max
α

(
−min

w,z
−
(

m

∑
i=1

φi(zi) + αizi

)
+ (Xα)>w− R(w)

)

=max
α
−
(

m

∑
i=1

max
zi

(−φi(zi)− αizi) + max
w

(Xα)>w− R(w)

)

=max
α
−

n

∑
i=1

φ∗i (−αi)− R∗(Xα)

where φ∗i and R∗ are the Fenchel conjugates of φi and R∗ respectively. Let us denote the
dual objective as D(α) = ∑m

i=1 φ∗i (−αi)− R∗(Xα). By weak duality, D(α) 6 P(w).
For R(w) = λ

2 ‖w‖2, R∗(p) = λ
2 ‖ 1

λ p‖2. So R is its own convex conjugate (up to
correction by a constant factor). In this case the dual becomes:

max
α

m

∑
i=1

φ∗i (−αi)−
λ

2
‖ 1

λ

m

∑
i=1

αixi‖2

We can relate the primal and dual variables by the map w(α) = 1
λ ∑m

i=1 αixi. In
particular, this shows that the optimal hyperplane is in the span of the data. Here are
some examples of models we can use under this framework.

82

Example 15.6 (Linear SVM). We would use the hinge loss for φi. This corresponds to

φi(w) = max(0, 1− yix>i w) , −φ∗i (−αi) = αiyi

Example 15.7 (Least-squares linear regression). We would use the squared loss for φi.
This corresponds to

φi(w) = (w>xi − yi)
2 , −φ∗i (−αi) = αiyi + α2/4

We end with a fact that relates the smoothness of φi to the strong convexity of φ∗i .

Fact 15.8. If φi is 1
γ -smooth, then φ∗i is γ-strongly convex.

15.2 Stochastic dual coordinate ascent (SDCA)

In this section we discuss a particular algorithm for empirical risk minimization which
makes use of Fenchel duality. Its main idea is picking an index i ∈ [m] at random, and
then solving the dual problem at coordinate i, while keeping the other coordinates fixed.

More precisely, the algorithm performs the following steps:

1. Start from w0 := w(α0)

2. For t = 1, . . . , T:

(a) Randomly pick i ∈ [m]

(b) Find ∆αi which maximizes

−Φi

(
−(αt−1

i + ∆αi)
)
− λ

2m

∥∥∥∥wt−1 +
1
λ

∆αixi

∥∥∥∥2

3. Update the dual and primal solution

(a) αt = αt−1 + ∆αi

(b) wt = wt−1 + 1
λ ∆αixi

For certain loss functions, the maximizer ∆αi is given in closed form. For example, for
hinge loss it is given explicitly by:

∆αi = yi max

(
0, min(1,

1− xT
i wt−1yi

‖xi‖2/λm
+ αt−1

i yi)

)
− αt−1

i ,

and for squared loss it is given by:

∆αi =
yi − xT

i wt−1 − 0.5αt−1
i

0.5 + ‖x‖2/λm
.

Note that these updates require both the primal and dual solutions to perform the
update.

Now we state a lemma given in [SSZ13], which implies linear convergence of SDCA.
In what follows, assume that ‖xi‖ 6 1, Φi(x) > 0 for all x, and Φi(0) 6 1.

83

Lemma 15.9. Assume Φ∗i is γ-strongly convex, where γ > 0. Then:

E[D(αt)− D(αt−1)] >
s
m

E[P(wt−1)− D(αt−1)],

where s = λmγ
1+λmγ .

We leave out the proof of this result, however give a short argument that proves
linear convergence of SDCA using this lemma. Denote εt

D := D(α∗)− D(αt). Because
the dual solution provides a lower bound on the primal solution, it follows that:

εt
D 6 P(wt)− D(αt).

Further, we can write:
D(αt)− D(αt−1) = εt−1

D − εt
D.

By taking expectations on both sides of this equality and applying Lemma 15.9, we
obtain:

E[εt−1
D − εt

D] = E[D(αt)− D(αt−1)]

>
s
m

E[P(wt−1)− D(αt−1)]

>
s
m

E[εt−1
D].

Rearranging terms and recursively applying the previous argument yields:

E[εt
D] 6 (1− s

m
)E[εt−1

D] 6 (1− s
m
)tε0

D.

From this inequality we can conclude that we need O(m + 1
λγ log(1/ε)) steps to achieve

ε dual error.
Using Lemma 15.9, we can also bound the primal error. Again using the fact that

the dual solution underestimates the primal solution, we provide the bound in the
following way:

E[P(wt)− P(w∗)] 6 E[P(wt)− D(αt)]

6
m
s

E[D(αt+1)− D(αt)]

6
m
s

E[εt
D],

where the last inequality ignores the negative term −E[εt−1
D].

84

16 Backpropagation and adjoints

From now onward, we give up the luxuries afforded by convexity and move to the
realm of non-convex functions. In the problems we have seen so far, deriving a closed-
form expression for the gradients was fairly straightforward. But, doing so can be a
challenging task for general non-convex functions. In this class, we are going to focus
our attention on functions that can be expressed as compositions of multiple functions.
In what follows, we will introduce backpropagation - a popular technique that exploits
the composite nature of the functions to compute gradients incrementally.

The following exposition is based on Tim Viera’s extensive and insightful notes
on backpropogation. Those notes also provide excellent demonstration code for the
interested reader.

16.1 Warming up

A common view of backpropagation is that “it’s just chain rule”. This view is not
particular helpful, however, and we will see that there is more to it. As a warm-up
example, let us look at the following optimization problem with g : Rn → R, f : R→ R:

min
x

f (g(x)). (54)

Using a similar trick to the one we saw in the context of ADMM, we can rewrite this
problem as

min
x

f (z) (55)

s.t. z = g(x)

Note that we have converted our original unconstrained problem in x into a constrained
optimization problem in x and z with the following Lagrangian,

L(x, z, λ) = f (z) + λ(g(x)− z). (56)

Setting ∇L = 0, we have the following optimality conditions,

0 = ∇xL = λg′(x)⇔ 0 = λg′(x) (57a)
0 = ∇zL = f ′(z)− λ⇔ λ = f ′(z) (57b)
0 = ∇λL = g(x)− z⇔ z = g(x) (57c)

which implies

0 = f ′(g(x))g′(x)
= ∇x f (g(x)) (by chain rule)

Hence, solving the Lagrangian equations gave us an incremental way of computing
gradients. As we will see shortly, this holds at great generality. It is important to notice
that we did not use the chain rule when solving the equations in (57). The chain rule
only showed up in the proof of correctness.

85

https://timvieira.github.io/blog/post/2017/08/18/backprop-is-not-just-the-chain-rule/
https://timvieira.github.io/blog/post/2017/08/18/backprop-is-not-just-the-chain-rule/

z1
<latexit sha1_base64="LReQjI8wHrHaKm/mtpVV3t5wv4g=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T940EmmCA1IwhPVjrCmnEkaGGY4baeKYhFx2opG11O/9UiVZom8N+OUhgIPJIsZwcZKd089v1epenVvBrRM/IJUoUCzV/nq9hOSCSoN4Vjrju+lJsyxMoxwOnFr3UzTFJMRHtCOpRILqsN8dusE1azSR3GibEmDZqr7ayLHQuuxiGynwGaoF72p+J/XyUx8EeZMppmhkswXxRlHJkHTx1GfKUoMH1uCiWL2WESGWGFibDyuTcFf/HmZBKf1y7p/e1ZtXBVxlOEIjuEEfDiHBtxAEwIgMIBneIU3RzgvzrvzMW8tOcXMIfyB8/kD4heNoQ==</latexit><latexit sha1_base64="LReQjI8wHrHaKm/mtpVV3t5wv4g=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T940EmmCA1IwhPVjrCmnEkaGGY4baeKYhFx2opG11O/9UiVZom8N+OUhgIPJIsZwcZKd089v1epenVvBrRM/IJUoUCzV/nq9hOSCSoN4Vjrju+lJsyxMoxwOnFr3UzTFJMRHtCOpRILqsN8dusE1azSR3GibEmDZqr7ayLHQuuxiGynwGaoF72p+J/XyUx8EeZMppmhkswXxRlHJkHTx1GfKUoMH1uCiWL2WESGWGFibDyuTcFf/HmZBKf1y7p/e1ZtXBVxlOEIjuEEfDiHBtxAEwIgMIBneIU3RzgvzrvzMW8tOcXMIfyB8/kD4heNoQ==</latexit><latexit sha1_base64="LReQjI8wHrHaKm/mtpVV3t5wv4g=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T940EmmCA1IwhPVjrCmnEkaGGY4baeKYhFx2opG11O/9UiVZom8N+OUhgIPJIsZwcZKd089v1epenVvBrRM/IJUoUCzV/nq9hOSCSoN4Vjrju+lJsyxMoxwOnFr3UzTFJMRHtCOpRILqsN8dusE1azSR3GibEmDZqr7ayLHQuuxiGynwGaoF72p+J/XyUx8EeZMppmhkswXxRlHJkHTx1GfKUoMH1uCiWL2WESGWGFibDyuTcFf/HmZBKf1y7p/e1ZtXBVxlOEIjuEEfDiHBtxAEwIgMIBneIU3RzgvzrvzMW8tOcXMIfyB8/kD4heNoQ==</latexit><latexit sha1_base64="LReQjI8wHrHaKm/mtpVV3t5wv4g=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T940EmmCA1IwhPVjrCmnEkaGGY4baeKYhFx2opG11O/9UiVZom8N+OUhgIPJIsZwcZKd089v1epenVvBrRM/IJUoUCzV/nq9hOSCSoN4Vjrju+lJsyxMoxwOnFr3UzTFJMRHtCOpRILqsN8dusE1azSR3GibEmDZqr7ayLHQuuxiGynwGaoF72p+J/XyUx8EeZMppmhkswXxRlHJkHTx1GfKUoMH1uCiWL2WESGWGFibDyuTcFf/HmZBKf1y7p/e1ZtXBVxlOEIjuEEfDiHBtxAEwIgMIBneIU3RzgvzrvzMW8tOcXMIfyB8/kD4heNoQ==</latexit>

z2
<latexit sha1_base64="FHQ1mhNHEWZAVFM5QRa1x8u6Zq4=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5IUQb0VvXisaLTQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T+410mmCA1IwhPVjrCmnEkaGGY4baeKYhFx+hCNrqb+wyNVmiXyzoxTGgo8kCxmBBsr3T71Gr1K1at7M6Bl4hekCgVavcpXt5+QTFBpCMdad3wvNWGOlWGE04lb62aappiM8IB2LJVYUB3ms1snqGaVPooTZUsaNFPdXxM5FlqPRWQ7BTZDvehNxf+8Tmbi8zBnMs0MlWS+KM44MgmaPo76TFFi+NgSTBSzxyIyxAoTY+NxbQr+4s/LJGjUL+r+zWm1eVnEUYYjOIYT8OEMmnANLQiAwACe4RXeHOG8OO/Ox7y15BQzh/AHzucP45uNog==</latexit><latexit sha1_base64="FHQ1mhNHEWZAVFM5QRa1x8u6Zq4=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5IUQb0VvXisaLTQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T+410mmCA1IwhPVjrCmnEkaGGY4baeKYhFx+hCNrqb+wyNVmiXyzoxTGgo8kCxmBBsr3T71Gr1K1at7M6Bl4hekCgVavcpXt5+QTFBpCMdad3wvNWGOlWGE04lb62aappiM8IB2LJVYUB3ms1snqGaVPooTZUsaNFPdXxM5FlqPRWQ7BTZDvehNxf+8Tmbi8zBnMs0MlWS+KM44MgmaPo76TFFi+NgSTBSzxyIyxAoTY+NxbQr+4s/LJGjUL+r+zWm1eVnEUYYjOIYT8OEMmnANLQiAwACe4RXeHOG8OO/Ox7y15BQzh/AHzucP45uNog==</latexit><latexit sha1_base64="FHQ1mhNHEWZAVFM5QRa1x8u6Zq4=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5IUQb0VvXisaLTQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T+410mmCA1IwhPVjrCmnEkaGGY4baeKYhFx+hCNrqb+wyNVmiXyzoxTGgo8kCxmBBsr3T71Gr1K1at7M6Bl4hekCgVavcpXt5+QTFBpCMdad3wvNWGOlWGE04lb62aappiM8IB2LJVYUB3ms1snqGaVPooTZUsaNFPdXxM5FlqPRWQ7BTZDvehNxf+8Tmbi8zBnMs0MlWS+KM44MgmaPo76TFFi+NgSTBSzxyIyxAoTY+NxbQr+4s/LJGjUL+r+zWm1eVnEUYYjOIYT8OEMmnANLQiAwACe4RXeHOG8OO/Ox7y15BQzh/AHzucP45uNog==</latexit><latexit sha1_base64="FHQ1mhNHEWZAVFM5QRa1x8u6Zq4=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5IUQb0VvXisaLTQhrLZbtqlu5uwuxFq6E/wJCji1X/kyX/jts1BWx8MPN6bYWZelHKmjed9O6WV1bX1jfKmu7W9s7tX2T+410mmCA1IwhPVjrCmnEkaGGY4baeKYhFx+hCNrqb+wyNVmiXyzoxTGgo8kCxmBBsr3T71Gr1K1at7M6Bl4hekCgVavcpXt5+QTFBpCMdad3wvNWGOlWGE04lb62aappiM8IB2LJVYUB3ms1snqGaVPooTZUsaNFPdXxM5FlqPRWQ7BTZDvehNxf+8Tmbi8zBnMs0MlWS+KM44MgmaPo76TFFi+NgSTBSzxyIyxAoTY+NxbQr+4s/LJGjUL+r+zWm1eVnEUYYjOIYT8OEMmnANLQiAwACe4RXeHOG8OO/Ox7y15BQzh/AHzucP45uNog==</latexit>

zd
<latexit sha1_base64="I9kGL+fLFuJ6+0lSy9eNLID2TgY=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbNqlu5uwuxFq6E/wJCji1X/kyX/j9uOgrQ8GHu/NMDMvyjjTxvO+ndLK6tr6RnnT3dre2d2r7B886DRXhAYk5alqR1hTziQNDDOctjNFsYg4bUXD64nfeqRKs1Tem1FGQ4H7kiWMYGOlu6de3KtUvbo3BVom/pxUYY5mr/LVjVOSCyoN4Vjrju9lJiywMoxwOnZr3VzTDJMh7tOOpRILqsNieusY1awSoyRVtqRBU9X9NVFgofVIRLZTYDPQi95E/M/r5Ca5CAsms9xQSWaLkpwjk6LJ4yhmihLDR5Zgopg9FpEBVpgYG49rU/AXf14mwWn9su7fnlUbV/M4ynAEx3ACPpxDA26gCQEQ6MMzvMKbI5wX5935mLWWnPnMIfyB8/kDL3KN1A==</latexit><latexit sha1_base64="I9kGL+fLFuJ6+0lSy9eNLID2TgY=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbNqlu5uwuxFq6E/wJCji1X/kyX/j9uOgrQ8GHu/NMDMvyjjTxvO+ndLK6tr6RnnT3dre2d2r7B886DRXhAYk5alqR1hTziQNDDOctjNFsYg4bUXD64nfeqRKs1Tem1FGQ4H7kiWMYGOlu6de3KtUvbo3BVom/pxUYY5mr/LVjVOSCyoN4Vjrju9lJiywMoxwOnZr3VzTDJMh7tOOpRILqsNieusY1awSoyRVtqRBU9X9NVFgofVIRLZTYDPQi95E/M/r5Ca5CAsms9xQSWaLkpwjk6LJ4yhmihLDR5Zgopg9FpEBVpgYG49rU/AXf14mwWn9su7fnlUbV/M4ynAEx3ACPpxDA26gCQEQ6MMzvMKbI5wX5935mLWWnPnMIfyB8/kDL3KN1A==</latexit><latexit sha1_base64="I9kGL+fLFuJ6+0lSy9eNLID2TgY=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbNqlu5uwuxFq6E/wJCji1X/kyX/j9uOgrQ8GHu/NMDMvyjjTxvO+ndLK6tr6RnnT3dre2d2r7B886DRXhAYk5alqR1hTziQNDDOctjNFsYg4bUXD64nfeqRKs1Tem1FGQ4H7kiWMYGOlu6de3KtUvbo3BVom/pxUYY5mr/LVjVOSCyoN4Vjrju9lJiywMoxwOnZr3VzTDJMh7tOOpRILqsNieusY1awSoyRVtqRBU9X9NVFgofVIRLZTYDPQi95E/M/r5Ca5CAsms9xQSWaLkpwjk6LJ4yhmihLDR5Zgopg9FpEBVpgYG49rU/AXf14mwWn9su7fnlUbV/M4ynAEx3ACPpxDA26gCQEQ6MMzvMKbI5wX5935mLWWnPnMIfyB8/kDL3KN1A==</latexit><latexit sha1_base64="I9kGL+fLFuJ6+0lSy9eNLID2TgY=">AAAB6nicbVBNS8NAEJ3Urxq/qh69LJaCp5KIoN6KXjxWNLbQhrLZbNqlu5uwuxFq6E/wJCji1X/kyX/j9uOgrQ8GHu/NMDMvyjjTxvO+ndLK6tr6RnnT3dre2d2r7B886DRXhAYk5alqR1hTziQNDDOctjNFsYg4bUXD64nfeqRKs1Tem1FGQ4H7kiWMYGOlu6de3KtUvbo3BVom/pxUYY5mr/LVjVOSCyoN4Vjrju9lJiywMoxwOnZr3VzTDJMh7tOOpRILqsNieusY1awSoyRVtqRBU9X9NVFgofVIRLZTYDPQi95E/M/r5Ca5CAsms9xQSWaLkpwjk6LJ4yhmihLDR5Zgopg9FpEBVpgYG49rU/AXf14mwWn9su7fnlUbV/M4ynAEx3ACPpxDA26gCQEQ6MMzvMKbI5wX5935mLWWnPnMIfyB8/kDL3KN1A==</latexit>

zd+1
<latexit sha1_base64="s9/Gx5gAHU2FvcW8kJVQ442UPx0=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCIJRECuqt6MVjBWMLbSibzaZdutnE3Y1QQ3+EJ0ERr/4fT/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrK6tb5Q37a3tnd29yv7BvUoySahHEp7IToAV5UxQTzPNaSeVFMcBp+1gdD31249UKpaIOz1OqR/jgWARI1gbqf3Uz8NTd9KvVJ26MwNaJm5BqlCg1a989cKEZDEVmnCsVNd1Uu3nWGpGOJ3YtV6maIrJCA9o11CBY6r8fHbvBNWMEqIokaaERjPV/jWR41ipcRyYzhjroVr0puJ/XjfT0YWfM5FmmgoyXxRlHOkETZ9HIZOUaD42BBPJzLGIDLHERJuIbJOCu/jzMvHO6pd197ZRbV4VcZThCI7hBFw4hybcQAs8IDCCZ3iFN+vBerHerY95a8kqZg7hD6zPH82Pj1A=</latexit><latexit sha1_base64="s9/Gx5gAHU2FvcW8kJVQ442UPx0=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCIJRECuqt6MVjBWMLbSibzaZdutnE3Y1QQ3+EJ0ERr/4fT/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrK6tb5Q37a3tnd29yv7BvUoySahHEp7IToAV5UxQTzPNaSeVFMcBp+1gdD31249UKpaIOz1OqR/jgWARI1gbqf3Uz8NTd9KvVJ26MwNaJm5BqlCg1a989cKEZDEVmnCsVNd1Uu3nWGpGOJ3YtV6maIrJCA9o11CBY6r8fHbvBNWMEqIokaaERjPV/jWR41ipcRyYzhjroVr0puJ/XjfT0YWfM5FmmgoyXxRlHOkETZ9HIZOUaD42BBPJzLGIDLHERJuIbJOCu/jzMvHO6pd197ZRbV4VcZThCI7hBFw4hybcQAs8IDCCZ3iFN+vBerHerY95a8kqZg7hD6zPH82Pj1A=</latexit><latexit sha1_base64="s9/Gx5gAHU2FvcW8kJVQ442UPx0=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCIJRECuqt6MVjBWMLbSibzaZdutnE3Y1QQ3+EJ0ERr/4fT/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrK6tb5Q37a3tnd29yv7BvUoySahHEp7IToAV5UxQTzPNaSeVFMcBp+1gdD31249UKpaIOz1OqR/jgWARI1gbqf3Uz8NTd9KvVJ26MwNaJm5BqlCg1a989cKEZDEVmnCsVNd1Uu3nWGpGOJ3YtV6maIrJCA9o11CBY6r8fHbvBNWMEqIokaaERjPV/jWR41ipcRyYzhjroVr0puJ/XjfT0YWfM5FmmgoyXxRlHOkETZ9HIZOUaD42BBPJzLGIDLHERJuIbJOCu/jzMvHO6pd197ZRbV4VcZThCI7hBFw4hybcQAs8IDCCZ3iFN+vBerHerY95a8kqZg7hD6zPH82Pj1A=</latexit><latexit sha1_base64="s9/Gx5gAHU2FvcW8kJVQ442UPx0=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCIJRECuqt6MVjBWMLbSibzaZdutnE3Y1QQ3+EJ0ERr/4fT/4bt20O2vpg4PHeDDPzgpQzpR3n2yqtrK6tb5Q37a3tnd29yv7BvUoySahHEp7IToAV5UxQTzPNaSeVFMcBp+1gdD31249UKpaIOz1OqR/jgWARI1gbqf3Uz8NTd9KvVJ26MwNaJm5BqlCg1a989cKEZDEVmnCsVNd1Uu3nWGpGOJ3YtV6maIrJCA9o11CBY6r8fHbvBNWMEqIokaaERjPV/jWR41ipcRyYzhjroVr0puJ/XjfT0YWfM5FmmgoyXxRlHOkETZ9HIZOUaD42BBPJzLGIDLHERJuIbJOCu/jzMvHO6pd197ZRbV4VcZThCI7hBFw4hybcQAs8IDCCZ3iFN+vBerHerY95a8kqZg7hD6zPH82Pj1A=</latexit>

zd+k
<latexit sha1_base64="g43xa66WJmfnUy6cywtK60S7vvo=">AAAB7nicbVBNS8NAEJ34WeNX1aOXxVIQhJKIoN6KXjxWMLbQhrLZbNolm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvyDhT2nG+raXlldW19cqGvbm1vbNb3du/V2kuCfVIylPZCbCinAnqaaY57WSS4iTgtB3E1xO//UilYqm406OM+gkeCBYxgrWR2k/9IjyJx/1qzWk4U6BF4pakBiVa/epXL0xJnlChCcdKdV0n036BpWaE07Fd7+WKZpjEeEC7hgqcUOUX03vHqG6UEEWpNCU0mqr2r4kCJ0qNksB0JlgP1bw3Ef/zurmOLvyCiSzXVJDZoijnSKdo8jwKmaRE85EhmEhmjkVkiCUm2kRkmxTc+Z8XiXfauGy4t2e15lUZRwUO4QiOwYVzaMINtMADAjE8wyu8WQ/Wi/Vufcxal6xy5gD+wPr8ASXAj4o=</latexit><latexit sha1_base64="g43xa66WJmfnUy6cywtK60S7vvo=">AAAB7nicbVBNS8NAEJ34WeNX1aOXxVIQhJKIoN6KXjxWMLbQhrLZbNolm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvyDhT2nG+raXlldW19cqGvbm1vbNb3du/V2kuCfVIylPZCbCinAnqaaY57WSS4iTgtB3E1xO//UilYqm406OM+gkeCBYxgrWR2k/9IjyJx/1qzWk4U6BF4pakBiVa/epXL0xJnlChCcdKdV0n036BpWaE07Fd7+WKZpjEeEC7hgqcUOUX03vHqG6UEEWpNCU0mqr2r4kCJ0qNksB0JlgP1bw3Ef/zurmOLvyCiSzXVJDZoijnSKdo8jwKmaRE85EhmEhmjkVkiCUm2kRkmxTc+Z8XiXfauGy4t2e15lUZRwUO4QiOwYVzaMINtMADAjE8wyu8WQ/Wi/Vufcxal6xy5gD+wPr8ASXAj4o=</latexit><latexit sha1_base64="g43xa66WJmfnUy6cywtK60S7vvo=">AAAB7nicbVBNS8NAEJ34WeNX1aOXxVIQhJKIoN6KXjxWMLbQhrLZbNolm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvyDhT2nG+raXlldW19cqGvbm1vbNb3du/V2kuCfVIylPZCbCinAnqaaY57WSS4iTgtB3E1xO//UilYqm406OM+gkeCBYxgrWR2k/9IjyJx/1qzWk4U6BF4pakBiVa/epXL0xJnlChCcdKdV0n036BpWaE07Fd7+WKZpjEeEC7hgqcUOUX03vHqG6UEEWpNCU0mqr2r4kCJ0qNksB0JlgP1bw3Ef/zurmOLvyCiSzXVJDZoijnSKdo8jwKmaRE85EhmEhmjkVkiCUm2kRkmxTc+Z8XiXfauGy4t2e15lUZRwUO4QiOwYVzaMINtMADAjE8wyu8WQ/Wi/Vufcxal6xy5gD+wPr8ASXAj4o=</latexit><latexit sha1_base64="g43xa66WJmfnUy6cywtK60S7vvo=">AAAB7nicbVBNS8NAEJ34WeNX1aOXxVIQhJKIoN6KXjxWMLbQhrLZbNolm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvyDhT2nG+raXlldW19cqGvbm1vbNb3du/V2kuCfVIylPZCbCinAnqaaY57WSS4iTgtB3E1xO//UilYqm406OM+gkeCBYxgrWR2k/9IjyJx/1qzWk4U6BF4pakBiVa/epXL0xJnlChCcdKdV0n036BpWaE07Fd7+WKZpjEeEC7hgqcUOUX03vHqG6UEEWpNCU0mqr2r4kCJ0qNksB0JlgP1bw3Ef/zurmOLvyCiSzXVJDZoijnSKdo8jwKmaRE85EhmEhmjkVkiCUm2kRkmxTc+Z8XiXfauGy4t2e15lUZRwUO4QiOwYVzaMINtMADAjE8wyu8WQ/Wi/Vufcxal6xy5gD+wPr8ASXAj4o=</latexit>

zn
<latexit sha1_base64="3p/2MNN2RiOHjdqF9Gm7Mu09aAI=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LJaCp5KIUL0VvXisYGyhDWWz3bRLN7thdyPU0N/gSVDEq3/Ik//GbZuDtj4YeLw3w8y8KOVMG8/7dkpr6xubW+Vtd2d3b/+gcnj0oGWmCA2I5FJ1IqwpZ4IGhhlOO6miOIk4bUfjm5nffqRKMynuzSSlYYKHgsWMYGOl4Kmfi2m/UvXq3hxolfgFqUKBVr/y1RtIkiVUGMKx1l3fS02YY2UY4XTq1nqZpikmYzykXUsFTqgO8/m1U1SzygDFUtkSBs1V99dEjhOtJ0lkOxNsRnrZm4n/ed3MxJdhzkSaGSrIYlGccWQkmr2OBkxRYvjEEkwUs8ciMsIKE2MDcm0K/vLPqyQ4r1/V/buLavO6iKMMJ3AKZ+BDA5pwCy0IgACDZ3iFN0c6L86787FoLTnFzDH8gfP5AwOAjuo=</latexit><latexit sha1_base64="3p/2MNN2RiOHjdqF9Gm7Mu09aAI=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LJaCp5KIUL0VvXisYGyhDWWz3bRLN7thdyPU0N/gSVDEq3/Ik//GbZuDtj4YeLw3w8y8KOVMG8/7dkpr6xubW+Vtd2d3b/+gcnj0oGWmCA2I5FJ1IqwpZ4IGhhlOO6miOIk4bUfjm5nffqRKMynuzSSlYYKHgsWMYGOl4Kmfi2m/UvXq3hxolfgFqUKBVr/y1RtIkiVUGMKx1l3fS02YY2UY4XTq1nqZpikmYzykXUsFTqgO8/m1U1SzygDFUtkSBs1V99dEjhOtJ0lkOxNsRnrZm4n/ed3MxJdhzkSaGSrIYlGccWQkmr2OBkxRYvjEEkwUs8ciMsIKE2MDcm0K/vLPqyQ4r1/V/buLavO6iKMMJ3AKZ+BDA5pwCy0IgACDZ3iFN0c6L86787FoLTnFzDH8gfP5AwOAjuo=</latexit><latexit sha1_base64="3p/2MNN2RiOHjdqF9Gm7Mu09aAI=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LJaCp5KIUL0VvXisYGyhDWWz3bRLN7thdyPU0N/gSVDEq3/Ik//GbZuDtj4YeLw3w8y8KOVMG8/7dkpr6xubW+Vtd2d3b/+gcnj0oGWmCA2I5FJ1IqwpZ4IGhhlOO6miOIk4bUfjm5nffqRKMynuzSSlYYKHgsWMYGOl4Kmfi2m/UvXq3hxolfgFqUKBVr/y1RtIkiVUGMKx1l3fS02YY2UY4XTq1nqZpikmYzykXUsFTqgO8/m1U1SzygDFUtkSBs1V99dEjhOtJ0lkOxNsRnrZm4n/ed3MxJdhzkSaGSrIYlGccWQkmr2OBkxRYvjEEkwUs8ciMsIKE2MDcm0K/vLPqyQ4r1/V/buLavO6iKMMJ3AKZ+BDA5pwCy0IgACDZ3iFN0c6L86787FoLTnFzDH8gfP5AwOAjuo=</latexit><latexit sha1_base64="3p/2MNN2RiOHjdqF9Gm7Mu09aAI=">AAAB7HicbVBNS8NAEJ3Urxq/qh69LJaCp5KIUL0VvXisYGyhDWWz3bRLN7thdyPU0N/gSVDEq3/Ik//GbZuDtj4YeLw3w8y8KOVMG8/7dkpr6xubW+Vtd2d3b/+gcnj0oGWmCA2I5FJ1IqwpZ4IGhhlOO6miOIk4bUfjm5nffqRKMynuzSSlYYKHgsWMYGOl4Kmfi2m/UvXq3hxolfgFqUKBVr/y1RtIkiVUGMKx1l3fS02YY2UY4XTq1nqZpikmYzykXUsFTqgO8/m1U1SzygDFUtkSBs1V99dEjhOtJ0lkOxNsRnrZm4n/ed3MxJdhzkSaGSrIYlGccWQkmr2OBkxRYvjEEkwUs8ciMsIKE2MDcm0K/vLPqyQ4r1/V/buLavO6iKMMJ3AKZ+BDA5pwCy0IgACDZ3iFN0c6L86787FoLTnFzDH8gfP5AwOAjuo=</latexit>

zn�1
<latexit sha1_base64="vTaQ12rU2NUoR6u7iRWS1t88Mco=">AAAB7nicbVBNS8NAEJ31s8avqkcvi6XgxZKIoN6KXjxWMLbQhrLZbtqlm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvTAXXxnW/0dLyyuraemnD2dza3tkt7+3f6yRTlPk0EYlqhUQzwSXzDTeCtVLFSBwK1gyH1xO/+ciU5om8M6OUBTHpSx5xSoyVmk/dXJ5442654tbcKfAi8QpSgQKNbvmr00toFjNpqCBatz03NUFOlOFUsLFT7WSapYQOSZ+1LZUkZjrIp/eOcdUqPRwlypY0eKo6vyZyEms9ikPbGRMz0PPeRPzPa2cmughyLtPMMElni6JMYJPgyfO4xxWjRowsIVRxeyymA6IINTYix6bgzf+8SPzT2mXNuz2r1K+KOEpwCEdwDB6cQx1uoAE+UBjCM7zCG3pAL+gdfcxal1AxcwB/gD5/AN/hj1w=</latexit><latexit sha1_base64="vTaQ12rU2NUoR6u7iRWS1t88Mco=">AAAB7nicbVBNS8NAEJ31s8avqkcvi6XgxZKIoN6KXjxWMLbQhrLZbtqlm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvTAXXxnW/0dLyyuraemnD2dza3tkt7+3f6yRTlPk0EYlqhUQzwSXzDTeCtVLFSBwK1gyH1xO/+ciU5om8M6OUBTHpSx5xSoyVmk/dXJ5442654tbcKfAi8QpSgQKNbvmr00toFjNpqCBatz03NUFOlOFUsLFT7WSapYQOSZ+1LZUkZjrIp/eOcdUqPRwlypY0eKo6vyZyEms9ikPbGRMz0PPeRPzPa2cmughyLtPMMElni6JMYJPgyfO4xxWjRowsIVRxeyymA6IINTYix6bgzf+8SPzT2mXNuz2r1K+KOEpwCEdwDB6cQx1uoAE+UBjCM7zCG3pAL+gdfcxal1AxcwB/gD5/AN/hj1w=</latexit><latexit sha1_base64="vTaQ12rU2NUoR6u7iRWS1t88Mco=">AAAB7nicbVBNS8NAEJ31s8avqkcvi6XgxZKIoN6KXjxWMLbQhrLZbtqlm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvTAXXxnW/0dLyyuraemnD2dza3tkt7+3f6yRTlPk0EYlqhUQzwSXzDTeCtVLFSBwK1gyH1xO/+ciU5om8M6OUBTHpSx5xSoyVmk/dXJ5442654tbcKfAi8QpSgQKNbvmr00toFjNpqCBatz03NUFOlOFUsLFT7WSapYQOSZ+1LZUkZjrIp/eOcdUqPRwlypY0eKo6vyZyEms9ikPbGRMz0PPeRPzPa2cmughyLtPMMElni6JMYJPgyfO4xxWjRowsIVRxeyymA6IINTYix6bgzf+8SPzT2mXNuz2r1K+KOEpwCEdwDB6cQx1uoAE+UBjCM7zCG3pAL+gdfcxal1AxcwB/gD5/AN/hj1w=</latexit><latexit sha1_base64="vTaQ12rU2NUoR6u7iRWS1t88Mco=">AAAB7nicbVBNS8NAEJ31s8avqkcvi6XgxZKIoN6KXjxWMLbQhrLZbtqlm03c3Qg19Ed4EhTx6v/x5L9x2+agrQ8GHu/NMDMvTAXXxnW/0dLyyuraemnD2dza3tkt7+3f6yRTlPk0EYlqhUQzwSXzDTeCtVLFSBwK1gyH1xO/+ciU5om8M6OUBTHpSx5xSoyVmk/dXJ5442654tbcKfAi8QpSgQKNbvmr00toFjNpqCBatz03NUFOlOFUsLFT7WSapYQOSZ+1LZUkZjrIp/eOcdUqPRwlypY0eKo6vyZyEms9ikPbGRMz0PPeRPzPa2cmughyLtPMMElni6JMYJPgyfO4xxWjRowsIVRxeyymA6IINTYix6bgzf+8SPzT2mXNuz2r1K+KOEpwCEdwDB6cQx1uoAE+UBjCM7zCG3pAL+gdfcxal1AxcwB/gD5/AN/hj1w=</latexit>

zn�2
<latexit sha1_base64="6nQY3CDv+znKrWsYkqgETlhvSTU=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0tSBPVW9OKxgrGFNpTNdtMu3Wzi7kaooT/Ck6CIV/+PJ/+N2zQHbX0w8Hhvhpl5QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf/gXsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03Ywvp757UcqFYvFnZ4k1I/wULCQEayN1H7qZ+K0Me1Xqk7dyYGWiVuQKhRo9StfvUFM0ogKTThWqus6ifYzLDUjnE7tWi9VNMFkjIe0a6jAEVV+lt87RTWjDFAYS1NCo1y1f01kOFJqEgWmM8J6pBa9mfif1011eOFnTCSppoLMF4UpRzpGs+fRgElKNJ8Ygolk5lhERlhiok1EtknBXfx5mXiN+mXdvT2rNq+KOMpwBMdwAi6cQxNuoAUeEBjDM7zCm/VgvVjv1se8tWQVM4fwB9bnD+Fmj10=</latexit><latexit sha1_base64="6nQY3CDv+znKrWsYkqgETlhvSTU=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0tSBPVW9OKxgrGFNpTNdtMu3Wzi7kaooT/Ck6CIV/+PJ/+N2zQHbX0w8Hhvhpl5QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf/gXsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03Ywvp757UcqFYvFnZ4k1I/wULCQEayN1H7qZ+K0Me1Xqk7dyYGWiVuQKhRo9StfvUFM0ogKTThWqus6ifYzLDUjnE7tWi9VNMFkjIe0a6jAEVV+lt87RTWjDFAYS1NCo1y1f01kOFJqEgWmM8J6pBa9mfif1011eOFnTCSppoLMF4UpRzpGs+fRgElKNJ8Ygolk5lhERlhiok1EtknBXfx5mXiN+mXdvT2rNq+KOMpwBMdwAi6cQxNuoAUeEBjDM7zCm/VgvVjv1se8tWQVM4fwB9bnD+Fmj10=</latexit><latexit sha1_base64="6nQY3CDv+znKrWsYkqgETlhvSTU=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0tSBPVW9OKxgrGFNpTNdtMu3Wzi7kaooT/Ck6CIV/+PJ/+N2zQHbX0w8Hhvhpl5QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf/gXsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03Ywvp757UcqFYvFnZ4k1I/wULCQEayN1H7qZ+K0Me1Xqk7dyYGWiVuQKhRo9StfvUFM0ogKTThWqus6ifYzLDUjnE7tWi9VNMFkjIe0a6jAEVV+lt87RTWjDFAYS1NCo1y1f01kOFJqEgWmM8J6pBa9mfif1011eOFnTCSppoLMF4UpRzpGs+fRgElKNJ8Ygolk5lhERlhiok1EtknBXfx5mXiN+mXdvT2rNq+KOMpwBMdwAi6cQxNuoAUeEBjDM7zCm/VgvVjv1se8tWQVM4fwB9bnD+Fmj10=</latexit><latexit sha1_base64="6nQY3CDv+znKrWsYkqgETlhvSTU=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0tSBPVW9OKxgrGFNpTNdtMu3Wzi7kaooT/Ck6CIV/+PJ/+N2zQHbX0w8Hhvhpl5QcKZ0o7zbZVWVtfWN8qb9tb2zu5eZf/gXsWpJNQjMY9lJ8CKciaop5nmtJNIiqOA03Ywvp757UcqFYvFnZ4k1I/wULCQEayN1H7qZ+K0Me1Xqk7dyYGWiVuQKhRo9StfvUFM0ogKTThWqus6ifYzLDUjnE7tWi9VNMFkjIe0a6jAEVV+lt87RTWjDFAYS1NCo1y1f01kOFJqEgWmM8J6pBa9mfif1011eOFnTCSppoLMF4UpRzpGs+fRgElKNJ8Ygolk5lhERlhiok1EtknBXfx5mXiN+mXdvT2rNq+KOMpwBMdwAi6cQxNuoAUeEBjDM7zCm/VgvVjv1se8tWQVM4fwB9bnD+Fmj10=</latexit>

zn�3
<latexit sha1_base64="ROO15CF2wV+psAAu5Goca12r58M=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0uignorevFYwdhCG8pmu2mXbjZxdyPUkB/hSVDEq//Hk//GbZuDtj4YeLw3w8y8IOFMacf5tkpLyyura+V1e2Nza3unsrt3r+JUEuqRmMeyHWBFORPU00xz2k4kxVHAaSsYXU/81iOVisXiTo8T6kd4IFjICNZGaj31MnF8mvcqVafuTIEWiVuQKhRo9ipf3X5M0ogKTThWquM6ifYzLDUjnOZ2rZsqmmAywgPaMVTgiCo/m96bo5pR+iiMpSmh0VS1f01kOFJqHAWmM8J6qOa9ifif10l1eOFnTCSppoLMFoUpRzpGk+dRn0lKNB8bgolk5lhEhlhiok1EtknBnf95kXgn9cu6e3tWbVwVcZThAA7hCFw4hwbcQBM8IDCCZ3iFN+vBerHerY9Za8kqZvbhD6zPH+Lrj14=</latexit><latexit sha1_base64="ROO15CF2wV+psAAu5Goca12r58M=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0uignorevFYwdhCG8pmu2mXbjZxdyPUkB/hSVDEq//Hk//GbZuDtj4YeLw3w8y8IOFMacf5tkpLyyura+V1e2Nza3unsrt3r+JUEuqRmMeyHWBFORPU00xz2k4kxVHAaSsYXU/81iOVisXiTo8T6kd4IFjICNZGaj31MnF8mvcqVafuTIEWiVuQKhRo9ipf3X5M0ogKTThWquM6ifYzLDUjnOZ2rZsqmmAywgPaMVTgiCo/m96bo5pR+iiMpSmh0VS1f01kOFJqHAWmM8J6qOa9ifif10l1eOFnTCSppoLMFoUpRzpGk+dRn0lKNB8bgolk5lhEhlhiok1EtknBnf95kXgn9cu6e3tWbVwVcZThAA7hCFw4hwbcQBM8IDCCZ3iFN+vBerHerY9Za8kqZvbhD6zPH+Lrj14=</latexit><latexit sha1_base64="ROO15CF2wV+psAAu5Goca12r58M=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0uignorevFYwdhCG8pmu2mXbjZxdyPUkB/hSVDEq//Hk//GbZuDtj4YeLw3w8y8IOFMacf5tkpLyyura+V1e2Nza3unsrt3r+JUEuqRmMeyHWBFORPU00xz2k4kxVHAaSsYXU/81iOVisXiTo8T6kd4IFjICNZGaj31MnF8mvcqVafuTIEWiVuQKhRo9ipf3X5M0ogKTThWquM6ifYzLDUjnOZ2rZsqmmAywgPaMVTgiCo/m96bo5pR+iiMpSmh0VS1f01kOFJqHAWmM8J6qOa9ifif10l1eOFnTCSppoLMFoUpRzpGk+dRn0lKNB8bgolk5lhEhlhiok1EtknBnf95kXgn9cu6e3tWbVwVcZThAA7hCFw4hwbcQBM8IDCCZ3iFN+vBerHerY9Za8kqZvbhD6zPH+Lrj14=</latexit><latexit sha1_base64="ROO15CF2wV+psAAu5Goca12r58M=">AAAB7nicbVBNS8NAEJ3Urxq/qh69LJaCF0uignorevFYwdhCG8pmu2mXbjZxdyPUkB/hSVDEq//Hk//GbZuDtj4YeLw3w8y8IOFMacf5tkpLyyura+V1e2Nza3unsrt3r+JUEuqRmMeyHWBFORPU00xz2k4kxVHAaSsYXU/81iOVisXiTo8T6kd4IFjICNZGaj31MnF8mvcqVafuTIEWiVuQKhRo9ipf3X5M0ogKTThWquM6ifYzLDUjnOZ2rZsqmmAywgPaMVTgiCo/m96bo5pR+iiMpSmh0VS1f01kOFJqHAWmM8J6qOa9ifif10l1eOFnTCSppoLMFoUpRzpGk+dRn0lKNB8bgolk5lhEhlhiok1EtknBnf95kXgn9cu6e3tWbVwVcZThAA7hCFw4hwbcQBM8IDCCZ3iFN+vBerHerY9Za8kqZvbhD6zPH+Lrj14=</latexit>

Figure 15: Computation graph

16.2 General formulation

Any composite function can be described in terms of its computation graph. As long as
the elementary functions of the computation graph are differentiable, we can perform
the same procedure as above. Before moving ahead, let us introduce some notation:

• Directed, acyclic computation graph: G = (V , E)
• Number of vertices: |V| = n

• Set of ancestors of ith node: α(i) = {j ∈ V : (j, i) ∈ E}
• Set of successors of ith node: β(i) = {j ∈ V : (i, j) ∈ E}
• Computation at the ith node: fi(zα(i)), fi : R|α(i)| → R|β(i)|

• Nodes:

– Input - z1, . . . , zd

– Intermediate - zd+1, . . . , zn−1

– Output - zn

Then, the general formulation is given by

min zn (58)
s.t. zi = fi(zα(i)).

with the following Lagrangian,

L(x, z, λ) = zn −∑
i

λi(zi − fi(zα(i))). (59)

As in the warm-up example, we set ∇L = 0. This can be viewed as an algorithm
comprising two separate steps:

86

Backpropagation algorithm

• Step 1: Set ∇λL = 0, i.e.,

∇λiL = zi − fi(zα(i)) = 0⇔ zi = fi(zα(i)) (60)

Observation: This is known as forward pass or forward propagation as the values at
the nodes (zi) are computed using the values of the ancestors.

• Step 2: Set ∇zjL = 0,

– for j = n,

0 = ∇zjL = 1− λn

⇔ λn = 1

– for j < n,

0 = ∇zjL
= ∇zj(zn −∑

i
λi(zi − fi(zα(i))))

= −∑
i

λi(∇zj [zi]−∇zj fi(zα(i)))

= −λj + ∑
i

λi∇zj fi(zα(i))

= −λj + ∑
i∈β(j)

λi
∂ fi(zα(i))

∂zj

⇔ λj = ∑
i∈β(j)

λi
∂ fi(zα(i))

∂zj

Observation: This is known as backward pass or backpropagation as λ′is are computed
using the gradients and values of λ at successor nodes in the computation graph.

16.3 Connection to chain rule

In this section, we will prove a theorem that explains why backpropagation allows us
to calculate gradients incrementally.

Theorem 16.1. For all 1 6 j 6 n, we have

λj =
∂ f (x)

∂zj
,

i.e., the partial derivative of the function f at x w.r.t to the jth node in the graph.

87

Proof. We assume for simplicity that the computation graph has L layers and edges
exist only between consecutive layers, i.e., f = fL ◦ · · · ◦ f1. The proof is by induction
over layers (starting from the output layer).
Base case: λn = 1 = ∂ fn(x)

∂zn
= ∂zn

zn
.

Induction: Fix pth layer and assume claim holds for nodes in all subsequent layers l > p.

Then, for node zj in layer p,

λj = ∑
i∈β(j)

λi
∂ fi(zα(i))

∂zj

= ∑
i∈β(j)

∂ f (x)
∂zi

∂zi

zj
(zβ(j) belong to layer p + 1)

=
∂ f (x)

∂zj
(by multivariate chain rule).

�

(∗) Note that the proof for arbitrary computation graphs is by induction over the partial
order induced by the reverse computation graph.

Remarks

1. Assuming elementary node operations cost constant time, cost of both the forward
and backward pass is O(|V|+ |E |)⇒ Linear time!

2. Notice that the algorithm itself does not use the chain rule, only its correctness
guarantee uses it.

3. Algorithm is equivalent to the “method of adjoints” from control theory introduced
in the 60’s. It was rediscovered by Baur and Strassen in ’83 for computing partial
derivatives [BS83]. More recently, it has received a lot of attention due to its
adoption by the Deep Learning community since the 90’s.

4. This algorithm is also known as automatic differentiation, not to be confused with

(a) Symbolic differentiation

(b) Numerical differentiation

16.4 Working out an example

Suppose we have a batch of data X ∈ Rn×d with labels y ∈ Rn. Consider a two-layer
neural net given by weights W1, W2 ∈ Rd×d :

f (W1, W2) = ‖σ(XW1)W2 − y‖2

88

To compute gradients, we only need to implement forward/backward pass for the
elementary operations:

• Squared norm

• Subtraction/addition

• Component-wise non-linearity σ

• Matrix multiplication

Observe that the partial derivatives for the first three operations are easy to compute.
Hence, it suffices to focus on matrix multiplication.

Back-propagation for matrix completion

The two steps of the backpropagation algorithm in this context are:

Forward Pass:

• Input: A ∈ Rm×n, B ∈ Rn×d

• Output: C = AB ∈ Rm×d

Backward Pass:

• Input: Partial derivatives Λ ∈ Rm×d (also A, B, C from forward pass)

• Output:

– Λ1 ∈ Rm×n (partial derivatives for left input)

– Λ2 ∈ Rn×d (partial derivatives for right input)

Claim 16.2. Λ1 = ΛBT, Λ2 = ATΛ

Proof.

f = ∑
i,j

λijCij = ∑
i,j
(AB)ij = ∑

i,j
λijΣkaikbkj.

So, by Lagrange update rule,

(Λ1)pq =
∂ f

∂apq
= ∑

i,j,k
λij

∂aik
∂apq

bkj = ∑
j

λpjbqj = (ΛBT)pq.

Using the same approach for partial derivative w.r.t. B, we get

(Λ2)pq = (ATΛ)pq

�

89

Part V

Non-convex problems

17 Non-convex problems

This lecture provides the important information on how non-convex problems differ
from convex problems. The major issue in non-convex problems is that it can be difficult
to find the global minimum because algorithms can easily get stuck in the possibly
numerous local minima and saddle points.

17.1 Local minima

We start with a discussion of local minima together with necessary and sufficient
conditions for local minimality.

Definition 17.1 (Local minimum). A point x∗ is an unconstrained local minimum if there
exist ε > 0 such that f (x∗) 6 f (x) for all x with ‖x− x∗‖ < ε.

Definition 17.2 (Global minimum). A point x∗ is an unconstrained global minimum if
f (x∗) 6 f (x) for all x.

For both definitions, we say “strict” if these inequalities are strict.

Proposition 17.3 (Necessary Conditions for local minimum). Let x∗ be an unconstrained
local minimum of f : Rn → R and assume f is continuously differentiable (C1) in an open set
containing x∗. Then

1. ∇ f (x∗) = 0 (First-Order Necessary Condition)

90

2. If in addition f is twice continuously differentiable in an open set around x∗, then
∇2 f (x∗) � 0. (Second Order Necessary Condition)

Proof. Fix any direction d ∈ Rn.

1. g(α) := f (x∗ + αd). Then

0 6 lim
α→0

f (x∗ + αd)− f (x∗)
α

(61)

=
∂g(0)

∂α

= d>∇ f (x∗)

Inequality 61 follows because x∗ is a local minimum, 0 6 f (x∗ + αd)− f (x∗) for
sufficiently small alpha. So, we can construct a sequence with only positive α

that converges to x∗ such that each element 0 6 f (x∗+αnd)− f (x∗)
αn

which implies that
statement given that f is locally differentiable.

Since d is arbitrary, this implies that ∇ f (x∗) = 0.

2. First we represent f (x∗ + αd)− f (x∗) using the 2nd order Taylor expansion.

f (x∗ + αd)− f (x∗) = α∇ f (x∗)>d +
α2

2
d>∇2 f (x∗)d + O(α2)

=
α2

2
d>∇2 f (x∗)d + O(α2)

Now we do the following

0 6 lim
α→0

f (x∗ + αd)− f (x∗)
α2

= lim
α→0

1
2

d>∇2 f (x∗)d +
O(α2)

α2

=
1
2

d>∇2 f (x∗)d

Because d is arbitrary, this implies that ∇2 f (x∗) � 0 (Positive semidefinite).

�

Note that ∇ f (x∗) = 0 alone does not imply x∗ is a local minimum. Even the nec-
essary conditions ∇ f (x∗) = 0 and ∇2 f (x∗) � 0 does not imply x∗ is a local minimum.
This is because it could be that ∇2 f (x∗) = 0, but the 3rd order is not 0. For example in
the 1d case, x∗ = 0 for f (x) = x3 satisfies these conditions, but is not a local minimum.
Now, we will look at the actual sufficient conditions for a local minimum, but these
conditions can only detect strict local minima.

91

Proposition 17.4 (Sufficient conditions for strict local minimum). Let f : Rn → R be
twice continuously differentiable (C2) over an open set S. Suppose x ∈ S such that∇ f (x∗) = 0
and ∇2 f (x) � 0 (positive definite). Then, x∗ is a strict unconstrained local minimum.

Proof. Fix d ∈ Rn. Note that d>∇2 f (x∗)d > λmin‖d‖2, where λmin is the smallest
eigenvalue of ∇2 f (x∗).

f (x∗ + d)− f (x∗) = ∇ f (x∗)>d +
1
2

d>∇2 f (x∗)d + O(‖d‖2) (62)

>
λmin

2
‖d‖2 + O(‖d‖2)

=

(
λmin

2
+

O(‖d‖2)

‖d‖2

)
‖d‖2

> 0 (63)

Equality 62 follows from using the 2nd Order Taylor expansion. Inequality 63 follows
for sufficiently small ‖d‖. Therefore, x∗ must be a strict local minimum. �

17.2 Stationary points

For non-convex problems we must accept that gradient descent cannot always find
a global minimum, and not necessarily even a local minimum. We can, however,
guarantee convergence to a stationary point.

Definition 17.5 (Stationary point). We say a point x ∈ Rn is a stationary point of
f : Rn → R if ∇ f (x) = 0.

Proposition 17.6. With appropriately chosen step sizes, gradient descent converges to a sta-
tionary point.

Proof idea. Suppose x′ = x− η∇ f (x) and ∇ f (x) 6= 0, since otherwise we’re already at
a stationary point.

From a first-order Taylor exapansion, we get

f (x′) = f (x) +∇ f (x)>(x′ − x) + o(‖x′ − x‖)
= f (x)− η‖∇ f (x)‖2 + o(η‖∇ f (x)‖)
= f (x)− η‖∇ f (x)‖2 + o(η) (64)

Equality 64 is justified because we control η, and ‖∇ f (x)‖ is a constant with respect to
η. Therefore, a sufficiently small step size η > 0 will guarantee that f (x) < f (x). �

Next we worry about selecting step sizes in a clever way.

92

17.2.1 Minimization Rule / Line Search

Given a descent direction d (example d = −∇ f (x)), let our step rate η be as follows

η ∈ argmin
η>0

f (x + ηd)

Using this procedure is called Line Search because we search for the best step size
along the direction d. However, exact line search can be expensive due to the argmin.

Instead, we can approximate this minimization by using the so-called Armijo Rule.
Fix

γ, s, σ < 1

Put η = γms where m is the smallest non-negative integer such that

f (x)− f (x + γmsd) > −σγms∇ f (x)>d

Think of s as an initial learning rate. If s causes sufficient decrease then stop, otherwise
keep multiplying by γ until it does. Typical choices for parameters are

γ =
1
2

, σ =
1

100
, s = 1 .

Notice that as long as d satisfies −∇ f (x)Td > 0 that the inequality ensures that our
function sequence will decrease.

Proposition 17.7. Assume that f if continuous and differentiable (C1), and let {xt} be a
sequence generated by xt+1 = xt − ηt∇ f (xt) where ηt is selected by the Armijo rule. Then,
every limit point of {xt} is a stationary point.

Proof. Let x̄ be a limit point. By continuity { f (xt)} converges to f (x̄) and therefore:

f (xt)− f (xt+1)→ 0

By definition of Armijo rule:

f (xt)− f (xt+1) > −σηt‖∇ f (xt)‖2 (65)

Suppose for the sake of contradiction that x̄ is not a stationary point of f . Then,

lim sup
t→∞

−‖∇ f (xt)‖2 < 0

By inequality 65, this must mean that ηt → 0. This implies ∃t0 such that ∀t > t0

f (xt)− f (xt −
ηt

γ
∇ f (xt)) <

σηt

γ
‖∇ f (xt)‖2

93

Because ηt → 0, we know that after some t0 all step sizes are chosen with a m > 1.
Therefore, going back one iteration of Armijo rule was not good enough to satisfy the
inequality or else some previous step size would have been chosen.

Now let η̃t =
ηt
γ and we can continue as follows

f (xt)− f (xt − η̃t∇ f (xt))

η̃t
< σ‖∇ f (x)‖2 ⇒

∇ f (xt − η̃t∇ f (xt))
T∇ f (xt) < σ‖∇ f (x)‖2 ⇒ (66)

‖∇ f (xt)‖2 6 σ‖∇ f (xt)‖2 (67)

Inequality 66 follows from using Mean Value Theorem (MVT) Inequality 67 follows
by taking the limit as ηt → 0⇒ η̃t → 0

This is a contradiction because 0 < σ < 1. Therefore, the limit point x̄ is a stationary
point of f . �

Therefore, if we can use the Armijo rule to determine step sizes that guarantee that
gradient descent will converge to a stationary point.

17.3 Saddle points

Knowing that gradient descent will converge to a stationary point, how concerned
should we be that the stationary point is not a local minimum?

Definition 17.8 (Saddle points). Saddle points are stationary points that are not local
optima.

This means that if f is twice differentiable then ∇2 f (x) has both positive and nega-
tive eigenvalues.

17.3.1 How do saddle points arise?

In most non-convex problems there exists several local minima. This is clear to see in
problems that have natural symmetry such as in a two layer fully connected neural
networks.

94

Notice that any permutation of the units of the hidden layer would preserve the same
function, so we have at least h! local minima. Typically a convex combination of two
distinct local minima in a non-convex problem is not a local minimum. In the case
where ∇ f (x) is differentiable, then by Mean Value Theorem we know that there must
exist another stationary point between any two local minima. So, there often exists
at least one saddle point between any two distinct local minima. Hence, many local
minima tends to lead to many saddle points.

However, recent work has demonstrated that saddle points are usually not a prob-
lem.

1. Gradient descent does not converge to strict saddle points from a random initial-
ization. [GHJY15]

2. Saddle points can be avoided with noise addition. [LPP+17]

18 Escaping saddle points

This lecture formalizes and shows the following intuitive statement for nonconvex
optimization:

Gradient descent almost never converges to (strict) saddle points.

The result was shown in [LSJR16]. Let’s start with some definitions.

Definition 18.1 (Stationary point). We call x∗ a stationary point if the gradient vanishes
at x∗, i.e., ∇ f (x∗) = 0.

We can further classify stationary points into different categories. One important
category are saddle points.

Definition 18.2 (Saddle point). A stationary point x∗ is a saddle point if for all ε > 0,
there are points x, y ∈ B(x∗; ε) s.t. f (x) 6 f (x∗) 6 f (y).

Definition 18.3 (Strict saddle point). For a twice continuously differentiable function
f ∈ C2, a saddle point x∗ is a strict saddle point if the Hessian at that point is not positive
semidefinite, i.e. λmin(∇2 f (x∗)) < 0, where λmin denotes the smallest eigenvalue.

18.1 Dynamical systems perspective

It’ll be helpful to think of the trajectory defined by gradient descent as a dynamical
system. To do so, we view each gradient descent update as a operator. For a fixed step
size η, let

g(x) = x− η∇ f (x)

95

so the notation for the result of iteration t from our previous discussion of gradient
descent carries over as xt = gt(x0) = g(g(...g(x0))), where g is applied t times on
the initial point x0. We call g the gradient map. Note that x∗ is stationary iff. it is a
fixed point of the gradient map i.e. g(x∗) = x∗. Also note that Dg(x) = I − η∇2 f (x)
(Jacobian of g) , a fact that will become important later. Now we formalize a notion of
the set of "attractors“ of x∗.

Definition 18.4. The global stable set of x∗, is defined as

WS(x∗) = {x ∈ Rn : lim
t

gt(x) = x∗}

In words, this is the set of points that will eventually converge to x∗.

With this definition out of the way, we can state the main claim formally as follows.

Theorem 18.5. Assume f ∈ C2 and is β-smooth. Also assume that the step size η < 1/β.
Then for all strict saddle points x∗, its set of attractors WS(x∗) has Lebesgue measure 0.

Remark 18.6. In fact, it could be proven with additional technicalities that the Lebesgue measure
of
⋃

strict saddle points x∗ WS(x∗) is also 0. This is just another way to say that gradient descent
almost surely converges to local minima.

Remark 18.7. By definition, this also holds true to any probability measure absolutely con-
tinuous w.r.t. the Lebesgue measure (e.g. any continuous probability distribution). That
is,

P(lim
t

xt = x∗) = 0

However, the theorem above is only an asymptotic statement. Non-asymptotically,
even with fairly natural random initialization schemes and non-pathological functions,
gradient descent can be significantly slowed down by saddle points. The most recent
result [DJL+17] is that gradient descent takes exponential time to escape saddle points
(even though the theorem above says that they do escape eventually). We won’t prove
this result in this lecture.

18.2 The case of quadratics

Before the proof, let’s go over two examples that will make the proof more intuitive:

Example 18.8. f (x) = 1
2 xT Hx where H is an n-by-n matrix, symmetric but not positive

semidefinite. For convenience, assume 0 is not an eigenvalue of H. So 0 is the only
stationary point and the only strict saddle point for this problem.

We can calculate g(x) = x − ηHx = (I − ηH)x and gt(x) = (I − ηH)tx. And we
know that λi(I − ηH) = 1− ηλi(H), where λi for i = 1...n could denote any one of the

96

eigenvalues. So in order for limt gt(x) = limt(1− ηλi(H))tx to converge to 0, we just
need limt(1− ηλi(H))t to converge to 0, that is, |1− ηλi(H)| < 1. This implies that

WS(0) = span
{

u|Hu = λu, 0 < λ <
η

2

}
i.e. the set of eigenvectors for the positive eigenvalues smaller than η

2 . Since η can
be arbitrarily large, we just consider the larger set of eigenvectors for the positive
eigenvalues. By our assumption on H, this set has dimension lower than n, thus has
measure 0.

Example 18.9. Consider the function f (x, y) = 1
2 x2 + 1

4 y4 − 1
2 y2 with corresponding

gradient update

g(x, y) =
[

(1− η)x
(1 + η)y− ηy3

]
,

and Hessian

∇2 f (x, y) =
[

1 0
0 3y2 − 1

]
.

We can see that (0,−1) and (0, 1) are the local minima, and (0, 0) is the only strict saddle
point. Similar to in the previous example, WS(0) is a low-dimensional subspace.

18.3 The general case

We conclude this lecture with a proof of the main theorem.

Proof of Theorem 18.5. First define the local stable set of x∗ as

WS
ε (x∗) = {x ∈ B(x∗; ε) : gt(x) ∈ B(x∗; ε) ∀t}

Intuitively, this describes the subset of B(x∗; ε) that stays in B(x∗; ε) under arbitrarily
many gradient maps. This establishes a notion of locality that matters for gradient
descent convergence, instead of B(x∗; ε) which has positive measure.

Now we state a simplified version of the stable manifold theorem without proof: For
a diffeomorphism g : Rn → Rn, if x∗ is a fixed point of g, then for all ε small enough,
WS

ε (x∗) is a submanifold of dimension equal to the number of eigenvalues of the Dg(x∗)
that are 6 1. A diffeomorphism, roughly speaking, is a differentiable isomorphism. In
fact, since differentiability is assumed for g, we will focus on the isomorphism.

Let x∗ be a strict saddle point. Once we have proven the fact that g is a diffeomor-
phism (using the assumption that η < 1/β), we can apply the stable manifold theorem
since x∗ is a fixed point of g. Because ∇ f (x∗) must have an eigenvalue < 0, Dg must
have an eigenvalue > 1, so the dimension of WS

ε (x∗) is less than n and WS
ε (x∗) has

measure 0.

97

If gt(x) converges x∗, there must ∃T large enough s.t. gT(x) ∈WS
ε (x∗). So WS(x∗) ⊆⋃

t>0 g−t(WS
ε (x∗)). For each t, gt is in particular an isomorphism (as a composition of

isomorphisms), and so it g−t. Therefore g−t(WS
ε (x∗)) has the same cardinality as WS

ε (x∗)
and has measure 0. Because the union is over a countable set, the union also has measure
0, thus its subset WS(x∗) ends up with measure 0 and we have the desired result.

Finally we show that g is bijective to establish the isomorphism (since it is assumed
to be smooth). It is injective because, assuming g(x) = g(y), by smoothness,

‖x− y‖ = ‖g(x) + η∇ f (x)− g(y)− η∇ f (x)‖ = η‖∇ f (x)−∇ f (y)‖ 6 ηβ‖x− y‖

Because ηβ < 1, we must have ‖x− y‖ = 0. To prove that g is surjective, we construct
an inverse function

h(y) = argmin
x

1
2
‖x− y‖2 − η f (x)

a.k.a. the proximal update. For η < 1/β, h is strongly convex, and by the KKT condition,
y = h(y)−∇ f (h(y)) = g(h(y)). This completes the proof. �

19 Alternating minimization and EM

This lecture was a sequence of code examples that you can find here:

Lecture 19
(opens in your browser)

20 Derivative-free optimization, policy gradient, controls

This lecture was a sequence of code examples that you can find here:

Lecture 20
(opens in your browser)

21 Non-convex constraints I

Recall that convex minimization refers to minimizing convex functions over convex
constraints. Today we will begin to explore minimizing convex functions with non-
convex constraints. It is difficult to analyze the impact of “non-convexity" in general,

98

https://ee227c.github.io/code/lecture19.html
https://ee227c.github.io/code/lecture20.html

since that can refer to anything that is not convex, which is a very broad class of
problems. So instead, we will focus on solving least squares with sparsity constraints:

min
‖x‖06s

‖Ax− y‖2
2

for y ∈ Rn, A ∈ Rn×d, and x ∈ Rd where d < n. We will show that in general even this
problem is hard to solve but that for a restricted class of problems there is an efficient
convex relaxation.

Least squares with sparsity constraints can be applied to solving compressed sensing
and sparse linear regression, which are important in a variety of domains. In compressed
sensing, A is a measurement model and y are the measurements of some sparse signal
x. Compressed sensing is applied to reduce the number of measurements needed for,
say, an MRI because by including a sparsity constraint on x we are able to recover the
signal x in fewer measurements.

In sparse linear regression, A is the data matrix and y is some outcome variable. The
goal of sparse linear regression is to recover a weights x on a sparse set of features that
are responsible for the outcome variable. In genetics, A could be the genes of a patient,
and y is whether they have a particular disease. Then the goal is to recover a weights x
on a sparse set of genes that are predictive of having the disease or not.

When there is no noise in the linear equations, we can simplify the problem to

min ‖x‖0

Ax = y

21.1 Hardness

Even this simplification is NP-hard, as we will show with a reduction to exact 3-cover,
which is NP-complete. Our proof is from [FR13].

Definition 21.1. The exact cover by 3-sets problem is given a collection {Ti} of 3-element
subsets of [n], does there exist an exact cover of [n], a set z ⊆ [d] such that ∪j∈zTj = [n]
and Ti ∩ Tj = ∅ for j 6= j′ ∈ z?

Definition 21.2. The support of a vector x is defined as

supp(x) = {i | xi 6= 0}.

Theorem 21.3. l0-minimization for general A and y is NP-hard.

Proof. Define matrix A as

Aij =

{
1 if i ∈ Tj

0 o.w

99

and y as the all ones vector. Note that from our construction we have ‖Ax‖0 6
3‖x‖0, since each column of A has 3 non-zeros. If x satisfies Ax = y, we thus have
‖x‖0 >

‖y‖0
3 = n

3 . Let us now run l0-minimization on A, y and let x̂ be the output. There
are two cases

1. If ‖x̂‖0 = n
3 , then y = supp(x̂) is an exact 3-cover.

2. If ‖x̂‖0 > n
3 , then no exact 3-cover can exist because it would achieve ‖x̂‖0 = n

3
and hence violate optimality of the solution derived through l0 minimization.

Thus, since we can solve exact 3-cover through l0 minimization, l0 minimization
must also be NP-hard. �

21.2 Convex relaxation

Although l0-minimization is NP-hard in general, we will prove that for a restricted
class of A, we can relax l0-minimization to l1-minimization. First, define the set of
approximately sparse vectors with support S as those whose l1 mass is dominated by S.
Formally,

Definition 21.4. The set of approximately sparse vectors with support S is

C(S) = {∆ ∈ Rd | ‖∆S̄‖1 6 ‖∆S‖1}

where S̄ = [d]/S and ∆s is ∆ restricted to S,

(∆S)i =

{
∆i if i ∈ S
0 o.w

Recall that the nullspace of matrix A is the set null(A) = {∆ ∈ Rd | A∆ = 0}. The
nullspace is the set of "bad" vectors in our estimation problem. Consider a solution
Ax = y. If ∆ ∈ null(A), then x + ∆ is also a solution since A(x + ∆) = Ax + A∆ =
Ax = b. Thus, we focus on matrices whose nullspace only contains zero on the set of
sparse vectors that we care about.

Definition 21.5. The matrix A satisfies the restricted nullspace property (RNP) with
respect to the support S if C(S) ∪ null(A) = {0}.

With these definitions in place, we can now state our main theorem.

Theorem 21.6. Given A ∈ Rn×d and y ∈ Rn we consider the solution to the l0-minimization
problem x∗ = argminAx=y ‖x‖0. Assume x∗ has support S and let the matrix A satisfy the
restricted nullspace property with respect to S. Then given the solutions of the l1-minimization
problem x̂ = argminAx=y ‖x‖1 we have x̂ = x∗.

100

Proof. We first note that by definition both x∗ and x̂ satisfy our feasibility constraint
Ax = y. Letting ∆ = x̂− x∗ be the error vector we have A∆ = Ax̂− Ax∗ = 0, which
implies that ∆ ∈ null(A).

Our goal now is to show that ∆ ∈ C(S) then we would have ∆ = 0 from the restricted
nullspace property. First, since x̂ is optimal in l1 it follows that ‖x̂‖1 6 ‖x∗‖1. We then
have

‖x∗S‖1 = ‖x∗‖1 > ‖x̂‖1

= ‖x∗ + ∆‖1

= ‖x∗S + ∆S‖1 + ‖x∗S + ∆S‖1 by splitting the l1 norm,

= ‖x∗S + ∆S‖1 + ‖∆S‖1 by the support assumption of ‖x∗‖1,
> ‖x∗S‖1 − ‖∆S‖1 + ‖∆S‖1.

Hence ‖∆S‖1 > ‖∆S‖1, which implies ∆ ∈ C(S). �

So far, so good. We have shown that the l1-relaxation works for certain matrices.
A natural question however is what kinds of matrices satisfy the restricted nullspace
property. In order to get a handle on this, we will study yet another nice property of
matrices, the so called restricted isometry property (RIP). Later, we will then see that
specific matrix ensembles satisfy RIP with high probability.

Definition 21.7. A matrix A satisfies the (s, δ)-RIP if for all s-sparse vectors x (‖x‖0 6 s),
we have

(1− δ)‖x‖2
2 6 ‖Ax‖2

2 6 (1 + δ)‖x‖2
2.

The intuition is that A acts like an isometry on sparse vectors (a true isometry would
have δ = 0). The RIP is useful since it implies that the difference between two s-sparse
vectors cannot be mapped to 0. By looking at the singular values of A we can derive the
following lemma.

Lemma 21.8. If A has (s, δ)-RIP, then

‖A>S AS − IS‖2 6 δ

for all subsets S of size s. Where

(AS)ij =

{
Aij if j ∈ S
0 o.w.

We now show that the RIP implies the restricted nullspace property.

Theorem 21.9. If the matrix A has the (2s, δ)-RIP, then it also has the restricted nullspace
property for all subsets S of cardinality |S| 6 s.

101

Proof. Let x ∈ null(A) be arbitrary but not equal to 0. Then we have to show that
x 6∈ C(S) for any S with |S| 6 s. In particular, let S0 be the set indices of the s largest
coefficients in x. It suffices to show that ‖xS0‖1 < ‖xS0

‖1 since it would then hold for
any other subset.

We write

S0 =

d d
s e−1⋃
j=1

Sj

where

• S1 is the subset of indices corresponding to the s largest entries in S0

• S2 is the subset of indices corresponding to the s largest entries in S0 \ S1

• S3 is the subset of indices corresponding to the s largest entries in S0 \ S1 \ S2

• etc. . .

So we have x = xS0 + ∑
j

xSj . We have decomposed x into blocks of size s. This is

sometimes called shelling. From RIP, we have

‖xS0‖2
2 6

1
1− δ

‖AxS0‖2
2.

Since x ∈ null(A) by assumption we have

A(xS0 + ∑
j>1

xSj) = 0

=⇒ AxS0 = −∑
j>1

AxSj .

102

Hence

‖xS0‖2
2 6

1
1− δ

‖AxS0‖2
2

=
1

1− δ
〈AxS0 , AxS0〉

=
1

1− δ ∑
j>1
〈AxS0 , AxSj〉

=
1

1− δ ∑
j>1
〈AxS0 ,−AxSj〉

=
1

1− δ ∑
j>1

(〈AxS0 ,−AxSj〉 − 〈xS0 , xSj〉) since 〈xS0 , xSj〉 = 0

=
1

1− δ ∑
j>1
〈xS0 , (I − A>A)xSj〉

6
1

1− δ ∑
j>1
‖xS0‖2δ‖xSj‖2 from Lemma 21.8.

So we have

‖xS0‖2 6
δ

1− δ ∑
j>1
‖xSj‖2. (68)

By construction, for each j > 1, we have

‖xsj‖∞ 6
1
S
‖XSj−1‖1

and hence
‖xsj‖2 6

1√
S
‖XSj−1‖1.

Plugging into Equation 68, we get

‖xS0‖1 6
√

S‖xS0‖2

6

√
Sδ

1− δ ∑
j>1
‖xSj‖2

6
δ

1− δ ∑
j>1
‖xSj−1‖1

6
δ

1− δ
(‖xs0‖1 + ∑

j>1
‖xSj−1‖1)

which is equivalent to

‖xs0‖1 6
δ

1− δ
(‖xs0‖1 + ‖xs0‖1).

Simple algebra gives us ‖xs0‖1 6 ‖xs0‖1 as long as δ < 1
3 . �

103

Now that we’ve shown that if A has the RIP then l1-relaxation will work, we look at
a few examples of naturally occurring matrices with this property.

Theorem 21.10. Let A ∈ Rn×d be defined as aij ∼ N (0, 1) iid. Then the matrix 1√
n A has

(s, δ)-RIP for n at least O
(

1
δ2 s log d

s

)
.

The same holds for sub-Gaussians. We have similar results for more structured
matrices such as subsampled Fourier matrices.

Theorem 21.11. Let A ∈ Rn×d be a subsampled Fourier matrix. Then A has (s, δ)-RIP for n
at least O

(
1
δ2 s log2 s log d

)
.

This result is from [HR15] using work from [RV07, Bou14, CT06]. O
(

1
δ2 s log d

)
is

conjectured but open.
There is a lot more work on convex relaxations. For sparsity alone people have

studied many variations e.g.

• Basic pursuit denoising (BPDN) min ‖x‖1 such that ‖Ax− y‖2 6 ε

• Constrained LASSO min ‖Ax− y‖2
2 such that ‖x‖1 6 λ

• Lagrangian LASSO min ‖Ax− y‖2
2 + λ‖x‖1

There are also convex relaxations for other constraints. For example min rank(X) such
that A(X) = Y is hard, a simpler problem is to solve the nuclear norm minimization
instead: min ‖X‖∗ such that A(X) = Y. This can be applied to low-rank estimation for
images or matrix completion.

104

Part VI

Higher-order and interior point
methods

22 Newton’s method

Up until now, we have only considered first order methods to optimize functions. Now,
we will utilize second order information to achieve a faster rate of convergence.

As always, our objective is to minimize a function f : Rn → R. The basic idea
of Newton’s Method is to set the first-order Taylor expansion of the gradient to zero:
F(x) = ∇ f (x) = 0. This leads to an iterative update step that will (under certain
conditions) lead to a significantly faster convergence rate than gradient descent methods.

To illustrate the point, consider a single variable function ϕ : R → R. Our goal is
to solve the non-linear equation ϕ(x) = 0. From Taylor’s theorem, we can express the
first-order form of ϕ(x) as

ϕ(x) = ϕ(x0) + ϕ′(x) · (x− x0) + o(|x− x0|)
given δ = x− x0 we equivalently have that

ϕ(x0 + δ) = ϕ(x0) + ϕ′(x) · δ + o(|δ|)
Disregarding the o(|δ|) term, we solve (over δ) the following objective:

ϕ(x0) + ϕ′(x0)δ = 0

Then, δ = − ϕ(x0)
ϕ′(x0)

, leading to the iteration xt+1 = xt − ϕ(xt)
ϕ′(xt)

.

We can similarly make an argument for a multi variable function F : Rd → R. Our
goal is to solve F(x) = 0. Again, from Taylor’s theorem we have that

F(x + ∆) = F(x) + JF(x)∆ + o(‖∆‖)
where JF is the Jacobian. This gives us ∆ = −J−1

F (x)F(x), and the iteration

xt+1 = xt − J−1
F (xt)F(xt)

Given f : R → R, Newton’s method applies this update to F(x) = ∇ f (x) = 0. It
uses the update rule

xt+1 = xt −∇2 f (xt)
−1∇ f (xt)

A Newton step minimizes the second order Taylor approximation

f (x) ≈ f (xt) +∇ f (xt)
>(x− xt) +

1
2
(x− xt)

>∇2 f (xt)(x− xt)

Now, we will show that Newton’s method converges to a local minimum, given a
starting point that is within a neighborhood of that point.

105

Theorem 22.1. Given f : Rn → R and assuming that

1. f is twice continuously differentiable

2. ∇2 f (x) is Lipschitz: ‖∇2 f (x)−∇2 f (x′)‖ 6 ‖x− x′‖

3. ∃x∗ s.t. ∇ f (x∗) = 0 and ∇2 f (x∗) � αI and ‖x0 − x∗‖ 6 α
2

Then, ‖xt+1 − x∗‖ 6 1
α‖xt − x∗‖2

Proof. Given that ∇ f (x∗) = 0, we have that

xt+1 − x∗ = xt − x∗ −∇2 f (xt)
−1∇ f (xt)

= ∇2 f (xt)
−1[∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))]

This implies that

‖xt+1 − x∗‖ 6 ‖∇2 f (xt)
−1‖ · ‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖

Claim 22.2. ‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖ 6 1
2‖xt − x∗‖2

Proof. Applying the integral remainder form of Taylor’s theorem to ∇ f (xt) we have
that

∇ f (xt)−∇ f (x∗) =
∫ 1

0
∇2 f (xt + γ(x∗ − xt)) · (xt − x∗)dγ

We therefore have that

‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖

= ‖
∫ 1

0
[∇2 f (xt)−∇2 f (xt + γ(x∗ − xt))](xt − x∗)dγ‖

6
∫ 1

0
‖∇2 f (xt)−∇2 f (xt + γ(x∗ − xt))‖ · ‖xt − x∗‖dγ

6
(∫ 1

0
γdγ

)
‖xt − x∗‖2 (∇2 f (xt) is Lipschitz)

=
1
2
‖xt − x∗‖2

�

Claim 22.3. ‖∇2 f (xt)−1‖ 6 2
α

Proof. By the Wielandt-Hoffman Theorem,

|λmin(∇2 f (xt))− λmin(∇2 f (x∗))| 6 ‖∇2 f (xt)−∇2 f (x∗)‖
6 ‖xt − x∗‖ (∇2 f (xt) is Lipschitz)

Thus, for ‖xt− x∗‖ 6 α
2 and given that∇2 f (x∗) � αI, this implies that λmin(∇2 f (xt)) >

α
2 . Hence, ‖∇2 f (xt)−1‖ 6 2

α . �

106

Putting the two claims together, we have that

‖xt+1 − x∗‖ 6 2
α
· 1

2
‖xt − x∗‖2 =

1
α
‖xt − x∗‖2

�

Note that we did not need convexity in the proof. Given that we are within a
neighborhood of the local minimum x∗, then we can achieve ε error in just O(log log 1

ε)
iterations. (this is called quadratic convergence.)

22.1 Damped update

In general, Newton’s method can be quite unpredictable. For example, consider the
function

f (x) =
√

x2 + 1

essentially a smoothed version of the absolute value |x|. Clearly, the function is min-
imized at x∗ = 0. Calculating the necessary derivatives for Newton’s method, we
find

f ′(x) =
x√

x2 + 1
f ′′(x) = (1 + x2)−3/2 .

Note that f (x) is strongly convex since its second derivative strictly positive and 1-
smooth (| f ′(x)| < 1). The Newton step for minimizing f (x) is

xt+1 = xt −
f ′(xt)

f ′′(x)
= −x3

t .

The behavior of this algorithm depends on the magnitude of xt. In particular, we have
the following three regimes

|xt| < 1 Algorithm converges cubically
|xt| = 1 Algorithm oscillates between −1 and 1
|xt| > 1 Algorithm diverges

This example shows that even for strongly convex functions with Lipschitz gradients
that Newton’s method is only guaranteed to converge locally. To avoid divergence, a
popular technique is to use a damped step–size:

xt+1 = xt − ηt∇2 f (xt)
−1∇ f (xt)

ηt can be chosen by backtracking line search. Usually though η = 1 is a good first choice
since, if you are in a region of convergence, you are guaranteed quadratic convergence.

107

22.2 Quasi-Newton methods

Let’s compare gradient descent and Newton’s method side by side.

xt+1 = xt − ηt∇ f (xt) (Gradient descent)

xt+1 = xt −∇2 f (xt)
−1∇ f (xt) (Newton’s method)

We can think of gradient descent as a Newton update in which we approximate
∇2 f (xt)−1 by a scaled version of the identity. That is, gradient descent is equivalent to
Newton’s method when ∇2 f (xt)−1 = ηt I where I is the identity matrix.

Quasi-Newton methods take the analogy a step further by approximating the Hes-
sian by some other matrix. The idea in doing so is to avoid an expensive matrix inversion
at each step. What we want is an approximation

f̂Bt(x) ≈ f (xt) +∇ f (xt)
>(x− xt) +

1
2
(x− xt)B−1

t (x− xt)

such that:

1. ∇ f̂Bt(xt) = ∇ f (xt).
It seems reasonable that our approximation should be the same up to first order.

2. ∇ f̂Bt(xt−1) = ∇ f (xt−1)
This condition states that the gradient should still be correct at the previous iterate.

If the two last gradients are correct, we can expect our Hessian approximation to be
reasonable along the direction xt − xt−1. This is called a secant approximation which can
be written as

∇ f̂Bt(xt+1) = ∇ f (xt)− B−1
t (xt+1 − xt)

If we let

st = xt+1 − xt

yt = ∇ f̂Bt(xt+1)−∇ f (xt)

Then we arrive at the Secant Equation

st = Btyt

There could be multiple Bt that satisfy this condition. We can enforce other constraints
to help narrow down on a particular choice. Some popular requirements are requiring
Bt to be positive definite, making sure Bt is as close to Bt−1 as possible for some
appropriate metric, or requiring Bt to be a low–rank update of previous iterates where
the update can be done via the Sherman–Morrison formula. One of the most successful
implementations of this is called BFGS named after Broyden, Fletcher, Goldfarb, Shanno
and its limited–memory counterpart, L–BFGS.

108

23 Experimenting with second-order methods

This lecture was a sequence of code examples that you can find here:

Lecture 24
(opens in your browser)

24 Enter interior point methods

In the last lecture, we discussed Newton’s method. Although it enjoys a fast local
convergence guarantee, global convergence of Newton’s method is not guaranteed.
In this lecture, we’ll introduce interior point methods, which can be thought of as an
extension of Newton’s method to ensure global convergence. We will first introduce
the main idea of barrier methods at great generality, before we specialize our analysis to
linear programming.

24.1 Barrier methods

Barrier methods replace inequality constraints with a so-called barrier function that
is added to objective function of the optimization problem. Consider the following
optimization problem:

min
x

f (x)

s.t. x ∈ Ω,
gj(x) 6 0 , j = 1, 2, · · · , r ,

where f : Rn → R, gj : Rn → R are given functions. The function f is continuous, and
Ω is a closed set. For the rest of the lecture, we assume convex gj and Ω = Rn. And we
denote x∗ as the optimal solution of the problem.

Definition 24.1 (Interior of the constraint region). The interior (relative to Ω) of the
constraint region is defined as S = {x ∈ Ω : gj(x) < 0, j = 1, 2, · · · , r}.

Assuming nonempty and convex S, we define a so-called barrier function B(x)
defined on S, such that B(x) is continuous the function blows up as we approach the
boundary of the constraint region. More formally, limgj(x)→0_ B(x) = ∞. Two most
common examples are logarithmic barrier function and inverse barrier function:

Logarithmic: B(x) = −
r

∑
j=1

ln{−gj(x)} (69)

Inverse: B(x) = −
r

∑
j=1

1
gj(x)

. (70)

109

https://ee227c.github.io/code/lecture24.html

S

Boundary of SBoundary of S

()B x

' ()B x

'  

Figure 16: Form of a barrier term

Both of them are convex if all gj(x) are convex.
Given a barrier function B(x), define a new cost function fε(x) = f (x) + εB(x),

where ε is a positive real number. Then we can eliminate the inequality constraints in
the original problem and obtain the following problem:

min
x

fε(x)

s.t. x ∈ Ω
(71)

The form of the barrier term εB(x) is illustrated in Figure 16.
The barrier method is defined by introducing a sequence {εt} such that 0 <

εt+1 < εt for t = 0, 1, 2, ... and εt → 0. Then we find a sequence {xt} such that
xt ∈ arg minx∈S fεt(x). Note that the barrier term εtB(x) goes to zero for all interior
points x ∈ S as εt → 0, allowing xt to get increasingly closer to the boundary. Therefore,
intuitively, xt should approach x∗ no matter x∗ is in the interior or on the boundary of S.
Its convergence is formalized in the following proposition.

Proposition 24.2. Every limit point of a sequence {xt} generated by a barrier method is a
global minimum of the original constrained problem.

Proof. See Proposition 5.1.1 of [Ber16]. �

The previous proposition shows that the global optima of our barrier problems
converge to the global constrained optimum. But how do we solve this sequence of
optimization problems. The key intuition is this. An initial interior point can often be

110

obtained easily for some large enough ε0. Then in each iteration, we can use xt as an
initialization to find xt+1 by Newton’s method. If εt is close to εt+1, we expect that xt is
also close to xt+1. Therefore, we have reason to hope that xt is in the local convergence
region for Newton’s method. In this manner we can extend the local convergence
guarantee of Newton to a more global property.

24.2 Linear programming

After sketching the basic idea in full generality, we will now tailor the logarithmic
barrier method to the linear programming (LP) problem defined as follows:

LP :
min

x
c>x

s.t. Ax > b
(72)

Here, A ∈ Rm×n with m > n and rank(A) = n. Denote x∗ as the optimal point.
First, we write out the augmented cost function by the logarithmic barrier method,

i.e.,

fε(x) = c>x− ε
m

∑
j=1

ln
(

A>j x− b
)

. (73)

where A>j is the j-th row of A. Define x∗ε = argminx fε(x).

Fact 24.3. The optimal point x∗ε exists and is unique for any ε > 0.

Proof. We can easily check that fε(x) is convex (as a sum of two convex functions).
Therefore, the minimizer x∗ε must exist and is unique.

To show the convexity of fε, we can check the second-order derivative, which is
positive definite as shown in (75) later. �

24.2.1 Central path

The central path of the LP problem in 72 is depicted by the set of {x∗ε |ε > 0}, as shown
in Figure 17.

Our goal is to design an algorithm that will approximately follow the central path.
Assume that we already have a “good enough” initial point, then at every step, we
apply one step of Newton’s method. To guarantee that the algorithm converges, we
need to answer the following two questions:

• Under what conditions does the single-step Newton method work?

• How should we update ε?

111

x∗∞

x∗

Figure 17: The central path

24.2.2 Newton decrement

To apply Newton’s method, first we need to find out the first-order and second-order
derivatives of fε. Note that

∇ fε(x) = c− ε
m

∑
j=1

Aj

A>j x− b
, c− εA>S−11 (74)

∇2 fε(x) = εA>S−2A = ε
m

∑
j=1

Aj A>j
s2

j
(75)

where 1 = [1, 1, · · · , 1]> ∈ Rm×1, and S = diag{s1, . . . , sm} is the diagonal matrix of
slack quantities sj = A>j x− b.

Recall the Newton update

x̄ = x− [∇2 fε(x)]−1∇ fε(x) = x− [εA>S−2A]−1
(

c− εA>S−11
)

. (76)

Recall that Newton’s method finds the solution by making the first-order condi-
tion zero. To measure how much the Newton update will decrease the first-order
approximation, we introduce the concept of Newton decrement.

Define the Newton decrement q(x, ε) as

q2(x, ε) = ∇ fε(x)>[∇2 fε(x)]−1∇ fε(x) . (77)

Equivalently,

q(x, ε) =
∥∥∥[∇2 fε(x)]−1/2∇ fε(x)

∥∥∥
2

=
∥∥∥∇2 fε(x)−1∇ fε

∥∥∥
∇2 fε(x)

,

where ‖x‖H =
√

x>Hx. The last identity reveals that we can think of the Newton
decrement as the magnitude of the Newton step measured in the local norm of the
Hessian.

112

Note that the Newton decrement also relates to the difference between fε(x) and the
minimum of its second-order approximation:

fε(x)−min
x̄

(
fε(x) +∇ fε(x)>(x̄− x) + (x̄− x)>∇2 fε(x)(x̄− x)

)
= fε(x)−

(
fε(x)− 1

2
∇ fε(x)>[∇2 fε(x)]−1∇ fε(x)

)
=

1
2
∇ fε(x)>[∇2 fε(x)]−1∇ fε(x) ,

1
2

q2(x, ε). (78)

We’ll use the Newton decrement to find out the conditions for the convergence
guarantee of the algorithm.

24.2.3 An update rule and its convergence guarantee

We’ll now come up with an update rule that can guarantee convergence if some initial
conditions are satisfied. To develop the update rule, we first introduce the following
propositions.

Proposition 24.4. Assume Ax > b and q(x, ε) < 1, then we have

c>x− c>x∗ 6 2εn. (79)

In particular, if we maintain that xt is interior point satisfying Axt > b, and
q(xt, εt) < 1, then c>xt converges to c>x∗ as εt goes to 0, i.e., xt converges to global
optimum. However, the condition q(xt, εt) < 1 is not trivial.

Proposition 24.5. If Ax > b, and q(x, ε) < 1, then the pure Newton iterate step x̄ satisfies,

q(x̄, ε) 6 q(x, ε)2 (80)

It ensures that q(x̄, ε) < 1 given q(x, ε) < 1 and x is interior point. But we also want
that q(x̄, ε̄) < 1 for some ε̄ < ε.

Proposition 24.6. Assume q(x, ε) 6 1
2 , interior point Ax > b, put

ε̄ =

(
1− 1

6
√

n

)
ε, (81)

then we have

q(x̄, ε̄) 6
1
2

(82)

These propositions suggest the following update rule,

xt+1 = xt −∇2 fεt(x)−1∇ fεt(xt) (83)

εt =

(
1− 1

6
√

n

)
ε (84)

113

Theorem 24.7. Suppose (x0, ε0) satisfies Ax0 > b and q(x0, ε0) 6 1
2 , then the algorithm

converges in O(√n log(n/η)) iterations to η error, i.e., we have c>xt 6 c>x∗ + η after
O(√n log(n/η)) iterations.

Proof. As Newton step maintains xt+1 in the interior, by using the three propositions
above, we have

c>xt 6 c>x∗ + 2εtn

= c>x∗ + 2
(

1− 1
6
√

n

)t
ε0

6 c>x∗ + 2 exp
(
− t

6
√

n

)
ε0 (85)

Therefore, to have a error of η, t > 6
√

n
ε0

log 2n
η . We can then conclude that the algorithm

converges in O(√n log(n/η)) iterations to η error. �

The algorithm stated above is the so-called short-step method. Although theoretical
convergence rate is guaranteed, the combination of small decrease in ε and a single
Newton step is slow in practice. Instead, a more practical method is the so-called
long-step method, where ε is reduced in faster rate and several Newton steps are taken
per iteration.

25 Primal-dual interior point methods

Previously, we discussed barrier methods and the so-called short-step method for
solving constrained LPs, and proved that convergence is guaranteed (albeit slow).
Herein, we study a primal-dual interior-point method (the so-called "long-step" path
following algorithm), which similarly seeks to approximate points on the central path.
Unlike the short-step method, the long-step method considers iterates of primal-dual
variables and seeks a more aggressive step size so long as it lies within a neighborhood
of the central path.

25.1 Deriving the dual problem

Let x ∈ Rn be the decision variable, and A ∈ Rm×n, b ∈ Rm and c ∈ Rn

min c>x s.t. Ax = b, x > 0

Here, > is pointwise.

114

Observe that we can always write the constraint as

min
x>0

c>x + max
z

z>(b− Ax)

= min
x>0

max
z

c>x + max
z

z>(b− Ax)

> max
z

z>b−min
x>0

(c− A>z)>x

= max
z

z>b−∞ · I(A>z > c)

Hence, the dual problem is as follows

max b>z s.t. A>z 6 c

This is equivalent to

max b>z s.t. A>z + s = c, s > 0

where we introduce the slack variable s ∈ Rn. If (x, z, s) are only feasible, then

Ax = b A>z + s = c x, s > 0

Moreover, we can compute that for feasible (x, z, s),

0 6 〈x, s〉 = x>(c− A>z) = 〈x, c〉 − 〈Ax, z〉 = 〈x, c〉 − 〈b, z〉 .

This is a proof of weak duality, namely that for any feasible x and z,

〈x, c〉 > 〈b, z〉

and therefore

〈x∗, c〉 > 〈b, z∗〉

Moreover, if there exists an feasible (x∗, z∗, s∗), with 〈x∗, s∗〉 = 0 then we have

〈x∗, c〉 = 〈b∗, z〉

which is strong duality.
Duality is also useful to bound the suboptimality gap, since in fact if (x, z, s) is

feasible, then

〈x, s〉 = 〈x, c〉 − 〈b, z〉 > 〈x, c〉 − 〈x∗, c〉 = 〈x− x∗, c〉

115

Can plot progress of the algorithm in “xs” space:

C

2 2

x s
1 1

N−

8 (γ)

1

2

3

0

x s

Wright (UW-Madison) Interior-Point Methods August 2017 20 / 48

Figure 18: Require iterates to stay within a certain neighborhood of the central path. We want
the pairwise products xisi to be not too different for i = 1, 2, ..., n.

25.2 Primal-dual iterates along the central path

The above suggests the following approach. Consider iterates (xk, zk, sk), and define

µk :=
1
n
· 〈xk, sk〉 =

〈xk, c〉 − 〈b, zk〉
n

>
〈xk − x∗, c〉

n

Define the strictly feasible set

F o := {Ax = b A>z + s = c x, s > 0}

Minimizing µk thus amounts to minimizing a bilinear objective over a linear constraint
set. The goal is to generate iterates (xk+1, zk+1, sk+1) such that

µk+1 6 (1− Cn−ρ)µk

This implies that

〈xk − x∗, c〉 6 ε in k = O (nρ log(n/ε)) steps.

The goal is to find a tuple (x, z, s) such that µ ≈ 0. We consider the following

116

approach. Define

Fτ(x, z, s) :=

 Ax− b
A>z + s− c
x ◦ s− τ1


Then the goal is to approx solve F0(x0, z0, s0) = 0 over F 0. We see that this can be
obtained by computing the solutions (xτ, zτ, zτ) to Fτ(x, z, s) = 0. We call the curve
τ 7→ (xτ, zτ, zτ) the “central path”. Note that, on the central path, xisi = τ for some
τ > 0. To ensure we stay close to the central path, we consider

N−∞(γ) := {(x, z, s) ∈ F0 : min
i

xisi > γµ(x, s)}

What we would like to do is take iterates (xk, zk, sk) such that µk decreases, and
(xk, zk, sk) ∈ N−∞(γ) for appropriate constants γ. N−∞(γ) ensures the nonnegativ-
ity contraints. This is portrayed in Figure 18.

1 Input: Parameters γ ∈ (0, 1), 0 < σmin < σmax < 1, and initialization
(x0, z0, t0) ∈ N−∞(γ). for t = 0, 1, 2, . . . do

2 Choose σk ∈ [σmin, σmax];
3 Run Newton step on Fσkµk (to be defined). Let (∆xk, ∆zk, ∆sk) denote the

Newton step

(∆xk, ∆zk, ∆sk) = −∇2Fτk(w
k)−1 · ∇Fτk(w

k),

where τk = σkµk and wk = (xk, zk, sk) .

Let αk ∈ (0, 1] be the largest step such that

αk = max{α ∈ (0, 1] : (xk, zk, sk) + α(∆xk, ∆zk, ∆sk) ∈ N∞(γ)}

Set (xk+1, zk+1, sk+1)← (xk, zk, sk) + αk(∆xk, ∆zk, ∆sk).
4 end

Algorithm 1: Long-step Path Following method

25.3 Generating Iterates with the Newton Step

The Newton Step for solving fixed point equations F(w) = 0. Indeed

F(w + d) = F(w) + J(w) · d + o(‖d‖)

117

Newton’s Method in 1D
This suggests an iterative scheme: Starting from some w0 2 RN :

dk = �J(wk)�1F (wk), wk+1 = wk + dk , k = 0, 1, 2,

0 w

F(w)

w

w*

ww2 1

Wright (UW-Madison) Interior-Point Methods August 2017 11 / 48

Figure 19: Recall that Newton’s method iteratively finds better approximations to the roots (or
zeroes) of a real-valued function.

The Newton’s method then chooses w← w + d,

J(w)d = −F(w)

Which implies that F(w + d) = o(‖d‖) for w sufficiently closed to the fixed point. This
gives you the quick converge. Note that, if F is a linear map, then in fact one Newton step
suffices. This can be seen from the Taylor expansion.

Our function Fτk is nearly linear, but not quite. Let’s compute the Newton Step. We
observe that the Jacobian is the linear operator A 0 0

0 A> I
Diag(S) 0 Diag(X)


Moreover, since (xk, zk, sk) ∈ F 0, we have that

Fτk(xk, zk, sk) =

 Axk − b
A>zk + sk − c
xk ◦ sk − τk1

 =

 0
0

xk ◦ sk − τk1


Let’s drop subscripts. Then, on one can verify that the Newton satisfies A 0 0

0 A> I
Diag(S) 0 Diag(X)

∆x
∆z
∆s

 =

 0
0

−x ◦ s + τ1


Some remarks

1. A∆x = 0, and that A>∆z + ∆s = 0.

118

2. This implies that (x+, z+, s+) := (x + ∆x, z + ∆z, s + ∆s) satisfies

Ax+ − b = 0 and A>z+ + s− c = 0

3. We also have

s ◦ ∆x + x ◦ ∆s = −x ◦ s + τ1

and thus

x+ ◦ s+ = x ◦ s + (◦∆x + x ◦ ∆s) + ∆x ◦ ∆s
= x ◦ s− x ◦ s + τ1 + ∆x ◦ ∆s

4. Thus,

Fτ(x+ ◦ s+) =

 0
0

∆x ◦ ∆s


In other words, if we can argue that ∆x ◦ ∆s is “negligible”, then the Newton step
produces an almost exact solution.

A more concrete analysis would be to study the term

nµ(x + α∆x, s + α∆x) = 〈x + ∆x, s + ∆s〉
= 〈x, s〉+ α (〈x, ∆s〉+ 〈s, ∆x〉) + α2〈∆s, ∆x〉

The last term in the above display vanishes, as shown by the above

0 = ∆x>(A>∆z + ∆s) = (A∆x)>z + 〈∆x, ∆s〉 = 〈∆x, ∆〉

Moreover, since s ◦ ∆x + x ◦ ∆s = −x ◦ s + τ1, we have by summing that

〈x, ∆s〉+ 〈s, ∆x〉 = −〈x, x〉+ τn = −(1− σ)〈x, s〉

where the last line uses nτ = nσµ = σnτ = σ〈x, s〉. Hence,

nµ(x + α∆x, s + α∆x) = nµ(x, s)(1− α(1− σ))

Hence, if one can show that (1− α)α > C(n) > 0 for some constant depending on the
dimension, then we see that

nµ(xk+1) 6 (1− C(n))knµ(x0)

giving us the rate of decrease. One can then show with more technical work that
α = Ω(1/n) while maintaining the N−∞(γ) invariant.

119

References

[AZO17] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate
unification of gradient and mirror descent. In Proc. 8th ITCS, 2017.

[BE02] Olivier Bousquet and André Elisseeff. Stability and generalization. JMLR,
2:499–526, 2002.

[Ber16] D.P. Bertsekas. Nonlinear Programming. Athena scientific optimization and
computation series. Athena Scientific, 2016.

[Bou14] Jean Bourgain. An Improved Estimate in the Restricted Isometry Problem, pages
65–70. Springer International Publishing, 2014.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives.
Theoretical computer science, 22(3):317–330, 1983.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3-4):231–357, 2015.

[CT06] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE Trans. Information
Theory, 52(12):5406–5425, 2006.

[DGN14] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods
of smooth convex optimization with inexact oracle. Mathematical Program-
ming, 146(1-2):37–75, 2014.

[DJL+17] Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barn-
abas Poczos. Gradient descent can take exponential time to escape saddle
points. In Advances in Neural Information Processing Systems, pages 1067–1077,
2017.

[DSSSC08] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Ef-
ficient projections onto the `1-ball for learning in high dimensions. In
Proc. 25th ICML, pages 272–279. ACM, 2008.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. Springer, 2013.

[FW56] Marguerite Frank and Philip Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics Quarterly, 3(1-2):95–110, 1956.

[GHJY15] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from sad-
dle points - online stochastic gradient for tensor decomposition. CoRR,
abs/1503.02101, 2015.

120

[HR15] Ishay Haviv and Oded Regev. The restricted isometry property of subsam-
pled fourier matrices. CoRR, abs/1507.01768, 2015.

[HRS15] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize
better: Stability of stochastic gradient descent. CoRR, abs/1509.01240, 2015.

[Lax07] Peter D. Lax. Linear Algebra and Its Applications. Wiley, 2007.

[LPP+17] Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz,
Michael I. Jordan, and Benjamin Recht. First-order methods almost always
avoid saddle points. CoRR, abs/1710.07406, 2017.

[LSJR16] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gra-
dient descent converges to minimizers. arXiv preprint arXiv:1602.04915,
2016.

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Doklady AN SSSR (translated as Soviet Mathematics
Doklady), 269:543–547, 1983.

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Programming. Volume I: A
basic course. Kluwer Academic Publishers, 2004.

[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):127–239, 2014.

[RM51] H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65–386, 1958.

[RV07] Mark Rudelson and Roman Vershynin. On sparse reconstruction from
fourier and gaussian measurements. Communications on Pure and Applied
Mathematics, 61(8):1025–1045, 2007.

[SSSSS10] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan.
Learnability, stability and uniform convergence. Journal of Machine Learning
Research, 11:2635–2670, 2010.

[SSZ13] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent
methods for regularized loss minimization. Journal of Machine Learning
Research, 14(Feb):567–599, 2013.

[TD97] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM,
1997.

121

[TVW+17] Stephen Tu, Shivaram Venkataraman, Ashia C Wilson, Alex Gittens,
Michael I Jordan, and Benjamin Recht. Breaking locality accelerates block
gauss-seidel. In Proc. 34th ICML, 2017.

122

	I Gradient methods
	Convexity
	Convex sets
	Convex functions
	Convex optimization

	Gradient method
	Gradient descent
	Lipschitz functions
	Smooth functions

	Strong convexity
	Reminders
	Strong convexity
	Convergence rate strongly convex functions
	Convergence rate for smooth and strongly convex functions

	Some applications of gradient methods
	Conditional gradient method
	The algorithm
	Conditional gradient convergence analysis
	Application to nuclear norm optimization problems

	II Accelerated gradient methods
	Discovering acceleration
	Quadratics
	Gradient descent on a quadratic
	Connection to polynomial approximation
	Chebyshev polynomials

	Krylov subspaces, eigenvalues, and conjugate gradient
	Krylov subspaces
	Finding eigenvectors
	Applying Chebyshev polynomials
	Conjugate gradient method

	Nesterov’s accelerated gradient descent
	Convergence analysis
	Strongly convex case

	Lower bounds and trade-offs with robustness
	Lower bounds
	Robustness and acceleration trade-offs

	III Stochastic optimization
	Stochastic optimization
	The stochastic gradient method
	The Perceptron
	Empirical risk minimization
	Online learning
	Multiplicative weights update

	Learning, stability, regularization
	Empirical risk and generalization error
	Algorithmic stability
	Stability of empirical risk minimization
	Regularization
	Implicit regularization

	Coordinate descent
	Coordinate descent
	Importance sampling
	Importance sampling for smooth coordinate descent
	Random coordinate vs. stochastic gradient descent
	Other extensions to coordinate descent

	IV Dual methods
	Duality theory
	Optimality conditions for equality constrained optimization
	Nonlinear constraints
	Duality
	Weak duality
	Strong duality

	Algorithms using duality
	Review
	Dual gradient ascent
	Augmented Lagrangian method / method of multipliers
	Dual decomposition
	ADMM — Alternating direction method of multipliers

	Fenchel duality and algorithms
	Deriving the dual problem for empirical risk minimization
	Stochastic dual coordinate ascent (SDCA)

	Backpropagation and adjoints
	Warming up
	General formulation
	Connection to chain rule
	Working out an example

	V Non-convex problems
	Non-convex problems
	Local minima
	Stationary points
	Saddle points

	Escaping saddle points
	Dynamical systems perspective
	The case of quadratics
	The general case

	Alternating minimization and EM
	Derivative-free optimization, policy gradient, controls
	Non-convex constraints I
	Hardness
	Convex relaxation

	VI Higher-order and interior point methods
	Newton's method
	Damped update
	Quasi-Newton methods

	Experimenting with second-order methods
	Enter interior point methods
	Barrier methods
	Linear programming

	Primal-dual interior point methods
	Deriving the dual problem
	Primal-dual iterates along the central path
	Generating Iterates with the Newton Step

