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26 Primal-dual interior point methods

Previously, we discussed barrier methods and the so-called short-step method for
solving constrained LPs, and proved that convergence is guaranteed (albeit slow).
Herein, we study a primal-dual interior-point method (the so-called "long-step" path
following algorithm), which similarly seeks to approximate points on the central path.
Unlike the short-step method, the long-step method considers iterates of primal-dual
variables and seeks a more aggressive step size so long as it lies within a neighborhood
of the central path.

26.1 Deriving the dual problem

Let x ∈ Rn be the decision variable, and A ∈ Rm×n, b ∈ Rm and c ∈ Rn

min c>x s.t. Ax = b, x > 0

Here, > is pointwise.
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Observe that we can always write the constraint as

min
x>0

c>x + max
z

z>(b− Ax)

= min
x>0

max
z

c>x + max
z

z>(b− Ax)

> max
z

z>b−min
x>0

(c− A>z)>x

= max
z

z>b−∞ · I(A>z > c)

Hence, the dual problem is as follows

max b>z s.t. A>z 6 c

This is equivalent to

max b>z s.t. A>z + s = c, s > 0

where we introduce the slack variable s ∈ Rn. If (x, z, s) are only feasible, then

Ax = b A>z + s = c x, s > 0

Moreover, we can compute that for feasible (x, z, s),

0 6 〈x, s〉 = x>(c− A>z) = 〈x, c〉 − 〈Ax, z〉 = 〈x, c〉 − 〈b, z〉 .

This is a proof of weak duality, namely that for any feasible x and z,

〈x, c〉 > 〈b, z〉

and therefore

〈x∗, c〉 > 〈b, z∗〉

Moreover, if there exists an feasible (x∗, z∗, s∗), with 〈x∗, s∗〉 = 0 then we have

〈x∗, c〉 = 〈b∗, z〉

which is strong duality.
Duality is also useful to bound the suboptimality gap, since in fact if (x, z, s) is

feasible, then

〈x, s〉 = 〈x, c〉 − 〈b, z〉 > 〈x, c〉 − 〈x∗, c〉 = 〈x− x∗, c〉
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Can plot progress of the algorithm in “xs” space:
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Figure 1: Require iterates to stay within a certain neighborhood of the central path. We want the
pairwise products xisi to be not too different for i = 1, 2, ..., n.

26.2 Primal-dual iterates along the central path

The above suggests the following approach. Consider iterates (xk, zk, sk), and define

µk :=
1
n
· 〈xk, sk〉 =

〈xk, c〉 − 〈b, zk〉
n

>
〈xk − x∗, c〉

n

Define the strictly feasible set

F o := {Ax = b A>z + s = c x, s > 0}

Minimizing µk thus amounts to minimizing a bilinear objective over a linear constraint
set. The goal is to generate iterates (xk+1, zk+1, sk+1) such that

µk+1 6 (1− Cn−ρ)µk

This implies that

〈xk − x∗, c〉 6 ε in k = O (nρ log(n/ε)) steps.

The goal is to find a tuple (x, z, s) such that µ ≈ 0. We consider the following
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approach. Define

Fτ(x, z, s) :=

 Ax− b
A>z + s− c
x ◦ s− τ1


Then the goal is to approx solve F0(x0, z0, s0) = 0 over F 0. We see that this can be
obtained by computing the solutions (xτ, zτ, zτ) to Fτ(x, z, s) = 0. We call the curve
τ 7→ (xτ, zτ, zτ) the “central path”. Note that, on the central path, xisi = τ for some
τ > 0. To ensure we stay close to the central path, we consider

N−∞(γ) := {(x, z, s) ∈ F0 : min
i

xisi > γµ(x, s)}

What we would like to do is take iterates (xk, zk, sk) such that µk decreases, and
(xk, zk, sk) ∈ N−∞(γ) for appropriate constants γ. N−∞(γ) ensures the nonnegativ-
ity contraints. This is portrayed in Figure 1.

1 Input: Parameters γ ∈ (0, 1), 0 < σmin < σmax < 1, and initialization
(x0, z0, t0) ∈ N−∞(γ). for t = 0, 1, 2, . . . do

2 Choose σk ∈ [σmin, σmax];
3 Run Newton step on Fσkµk (to be defined). Let (∆xk, ∆zk, ∆sk) denote the

Newton step

(∆xk, ∆zk, ∆sk) = −∇2Fτk(w
k)−1 · ∇Fτk(w

k),

where τk = σkµk and wk = (xk, zk, sk) .

Let αk ∈ (0, 1] be the largest step such that

αk = max{α ∈ (0, 1] : (xk, zk, sk) + α(∆xk, ∆zk, ∆sk) ∈ N∞(γ)}

Set (xk+1, zk+1, sk+1)← (xk, zk, sk) + αk(∆xk, ∆zk, ∆sk).
4 end

Algorithm 1: Long-step Path Following method

26.3 Generating Iterates with the Newton Step

The Newton Step for solving fixed point equations F(w) = 0. Indeed

F(w + d) = F(w) + J(w) · d + o(‖d‖)
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Newton’s Method in 1D
This suggests an iterative scheme: Starting from some w0 2 RN :

dk = �J(wk)�1F (wk), wk+1 = wk + dk , k = 0, 1, 2, . . . .
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Figure 2: Recall that Newton’s method iteratively finds better approximations to the roots (or
zeroes) of a real-valued function.

The Newton’s method then chooses w← w + d,

J(w)d = −F(w)

Which implies that F(w + d) = o(‖d‖) for w sufficiently closed to the fixed point. This
gives you the quick converge. Note that, if F is a linear map, then in fact one Newton step
suffices. This can be seen from the Taylor expansion.

Our function Fτk is nearly linear, but not quite. Let’s compute the Newton Step. We
observe that the Jacobian is the linear operator A 0 0

0 A> I
Diag(S) 0 Diag(X)


Moreover, since (xk, zk, sk) ∈ F 0, we have that

Fτk(xk, zk, sk) =

 Axk − b
A>zk + sk − c
xk ◦ sk − τk1

 =

 0
0

xk ◦ sk − τk1


Let’s drop subscripts. Then, on one can verify that the Newton satisfies A 0 0

0 A> I
Diag(S) 0 Diag(X)

∆x
∆z
∆s

 =

 0
0

−x ◦ s + τ1


Some remarks

1. A∆x = 0, and that A>∆z + ∆s = 0.
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2. This implies that (x+, z+, s+) := (x + ∆x, z + ∆z, s + ∆s) satisfies

Ax+ − b = 0 and A>z+ + s− c = 0

3. We also have

s ◦ ∆x + x ◦ ∆s = −x ◦ s + τ1

and thus

x+ ◦ s+ = x ◦ s + (◦∆x + x ◦ ∆s) + ∆x ◦ ∆s
= x ◦ s− x ◦ s + τ1 + ∆x ◦ ∆s

4. Thus,

Fτ(x+ ◦ s+) =

 0
0

∆x ◦ ∆s


In other words, if we can argue that ∆x ◦ ∆s is “negligible”, then the Newton step
produces an almost exact solution.

A more concrete analysis would be to study the term

nµ(x + α∆x, s + α∆x) = 〈x + ∆x, s + ∆s〉
= 〈x, s〉+ α (〈x, ∆s〉+ 〈s, ∆x〉) + α2〈∆s, ∆x〉

The last term in the above display vanishes, as shown by the above

0 = ∆x>(A>∆z + ∆s) = (A∆x)>z + 〈∆x, ∆s〉 = 〈∆x, ∆〉
Moreover, since s ◦ ∆x + x ◦ ∆s = −x ◦ s + τ1, we have by summing that

〈x, ∆s〉+ 〈s, ∆x〉 = −〈x, x〉+ τn = −(1− σ)〈x, s〉
where the last line uses nτ = nσµ = σnτ = σ〈x, s〉. Hence,

nµ(x + α∆x, s + α∆x) = nµ(x, s)(1− α(1− σ))

Hence, if one can show that (1− α)α > C(n) > 0 for some constant depending on the
dimension, then we see that

nµ(xk+1) 6 (1− C(n))knµ(x0)

giving us the rate of decrease. One can then show with more technical work that
α = Ω(1/n) while maintaining the N−∞(γ) invariant.

References

6


	Primal-dual interior point methods
	Deriving the dual problem
	Primal-dual iterates along the central path
	Generating Iterates with the Newton Step


