Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu
Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

October 15, 2018

26 Primal-dual interior point methods

Previously, we discussed barrier methods and the so-called short-step method for solving constrained LPs, and proved that convergence is guaranteed (albeit slow). Herein, we study a primal-dual interior-point method (the so-called "long-step" path following algorithm), which similarly seeks to approximate points on the central path. Unlike the short-step method, the long-step method considers iterates of primal-dual variables and seeks a more aggressive step size so long as it lies within a neighborhood of the central path.

26.1 Deriving the dual problem

Let $x \in \mathbb{R}^{n}$ be the decision variable, and $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $c \in \mathbb{R}^{n}$

$$
\min c^{\top} x \text { s.t. } \quad A x=b, x \geqslant 0
$$

Here, \geqslant is pointwise.

Observe that we can always write the constraint as

$$
\begin{aligned}
& \min _{x \geqslant 0} c^{\top} x+\max _{z} z^{\top}(b-A x) \\
= & \min _{x \geqslant 0} \max _{z} c^{\top} x+\max _{z} z^{\top}(b-A x) \\
\geqslant & \max _{z} z^{\top} b-\min _{x \geqslant 0}\left(c-A^{\top} z\right)^{\top} x \\
= & \max _{z} z^{\top} b-\infty \cdot \mathbb{I}\left(A^{\top} z>c\right)
\end{aligned}
$$

Hence, the dual problem is as follows

$$
\max b^{\top} z \quad \text { s.t. } \quad A^{\top} z \leqslant c
$$

This is equivalent to

$$
\max b^{\top} z \text { s.t. } A^{\top} z+s=c, \quad s \geqslant 0
$$

where we introduce the slack variable $s \in \mathbb{R}^{n}$. If (x, z, s) are only feasible, then

$$
A x=b \quad A^{\top} z+s=c \quad x, s \geqslant 0
$$

Moreover, we can compute that for feasible (x, z, s),

$$
0 \leqslant\langle x, s\rangle=x^{\top}\left(c-A^{\top} z\right)=\langle x, c\rangle-\langle A x, z\rangle=\langle x, c\rangle-\langle b, z\rangle
$$

This is a proof of weak duality, namely that for any feasible x and z,

$$
\langle x, c\rangle \geqslant\langle b, z\rangle
$$

and therefore

$$
\left\langle x^{*}, c\right\rangle \geqslant\left\langle b, z^{*}\right\rangle
$$

Moreover, if there exists an feasible $\left(x^{*}, z^{*}, s^{*}\right)$, with $\left\langle x^{*}, s^{*}\right\rangle=0$ then we have

$$
\left\langle x^{*}, c\right\rangle=\left\langle b^{*}, z\right\rangle
$$

which is strong duality.
Duality is also useful to bound the suboptimality gap, since in fact if (x, z, s) is feasible, then

$$
\langle x, s\rangle=\langle x, c\rangle-\langle b, z\rangle \geqslant\langle x, c\rangle-\left\langle x^{*}, c\right\rangle=\left\langle x-x^{*}, c\right\rangle
$$

Figure 1: Require iterates to stay within a certain neighborhood of the central path. We want the pairwise products $x_{i} s_{i}$ to be not too different for $i=1,2, \ldots, n$.

26.2 Primal-dual iterates along the central path

The above suggests the following approach. Consider iterates $\left(x_{k}, z_{k}, s_{k}\right)$, and define

$$
\mu_{k}:=\frac{1}{n} \cdot\left\langle x_{k}, s_{k}\right\rangle=\frac{\left\langle x_{k}, c\right\rangle-\left\langle b, z_{k}\right\rangle}{n} \geqslant \frac{\left\langle x_{k}-x^{*}, c\right\rangle}{n}
$$

Define the strictly feasible set

$$
\mathcal{F}^{o}:=\left\{A x=b \quad A^{\top} z+s=c \quad x, s>0\right\}
$$

Minimizing μ_{k} thus amounts to minimizing a bilinear objective over a linear constraint set. The goal is to generate iterates $\left(x^{k+1}, z^{k+1}, s^{k+1}\right)$ such that

$$
\mu_{k+1} \leqslant\left(1-C n^{-\rho}\right) \mu_{k}
$$

This implies that

$$
\left\langle x_{k}-x^{*}, c\right\rangle \leqslant \epsilon \text { in } k=\mathcal{O}\left(n^{\rho} \log (n / \epsilon)\right) \text { steps. }
$$

The goal is to find a tuple (x, z, s) such that $\mu \approx 0$. We consider the following
approach. Define

$$
F_{\tau}(x, z, s):=\left[\begin{array}{c}
A x-b \\
A^{\top} z+s-c \\
x \circ s-\tau \mathbf{1}
\end{array}\right]
$$

Then the goal is to approx solve $F_{0}\left(x_{0}, z_{0}, s_{0}\right)=\mathbf{0}$ over \mathcal{F}^{0}. We see that this can be obtained by computing the solutions $\left(x_{\tau}, z_{\tau}, z_{\tau}\right)$ to $F_{\tau}(x, z, s)=\mathbf{0}$. We call the curve $\tau \mapsto\left(x_{\tau}, z_{\tau}, z_{\tau}\right)$ the "central path". Note that, on the central path, $x_{i} s_{i}=\tau$ for some $\tau>0$. To ensure we stay close to the central path, we consider

$$
\mathcal{N}_{-\infty}(\gamma):=\left\{(x, z, s) \in \mathcal{F}_{0}: \min _{i} x_{i} s_{i} \geqslant \gamma \mu(x, s)\right\}
$$

What we would like to do is take iterates $\left(x_{k}, z_{k}, s_{k}\right)$ such that μ_{k} decreases, and $\left(x_{k}, z_{k}, s_{k}\right) \in \mathcal{N}_{-\infty}(\gamma)$ for appropriate constants $\gamma . \mathcal{N}_{-\infty}(\gamma)$ ensures the nonnegativity contraints. This is portrayed in Figure 1.

Input: Parameters $\gamma \in(0,1), 0<\sigma_{\min }<\sigma_{\max }<1$, and initialization $\left(x^{0}, z^{0}, t^{0}\right) \in \mathcal{N}_{-\infty}(\gamma)$. for $t=0,1,2, \ldots$ do
2 Choose $\sigma_{k} \in\left[\sigma_{\min }, \sigma_{\max }\right]$;
Run Newton step on $F_{\sigma_{k} \mu_{k}}$ (to be defined). Let $\left(\Delta x^{k}, \Delta z^{k}, \Delta s^{k}\right)$ denote the Newton step

$$
\begin{aligned}
& \left(\Delta x^{k}, \Delta z^{k}, \Delta s^{k}\right)=-\nabla^{2} F_{\tau_{k}}\left(w^{k}\right)^{-1} \cdot \nabla F_{\tau_{k}}\left(w^{k}\right), \\
& \text { where } \tau_{k}=\sigma_{k} \mu_{k} \text { and } w^{k}=\left(x^{k}, z^{k}, s^{k}\right) .
\end{aligned}
$$

Let $\alpha_{k} \in(0,1]$ be the largest step such that

$$
\alpha_{k}=\max \left\{\alpha \in(0,1]:\left(x^{k}, z^{k}, s^{k}\right)+\alpha\left(\Delta x^{k}, \Delta z^{k}, \Delta s^{k}\right) \in \mathcal{N}_{\infty}(\gamma)\right\}
$$

$$
\text { Set }\left(x^{k+1}, z^{k+1}, s^{k+1}\right) \leftarrow\left(x^{k}, z^{k}, s^{k}\right)+\alpha_{k}\left(\Delta x^{k}, \Delta z^{k}, \Delta s^{k}\right)
$$

4 end
Algorithm 1: Long-step Path Following method

26.3 Generating Iterates with the Newton Step

The Newton Step for solving fixed point equations $F(w)=0$. Indeed

$$
F(w+d)=F(w)+J(w) \cdot d+o(\|d\|)
$$

Figure 2: Recall that Newton's method iteratively finds better approximations to the roots (or zeroes) of a real-valued function.

The Newton's method then chooses $w \leftarrow w+d$,

$$
J(w) d=-F(w)
$$

Which implies that $F(w+d)=o(\|d\|)$ for w sufficiently closed to the fixed point. This gives you the quick converge. Note that, if F is a linear map, then in fact one Newton step suffices. This can be seen from the Taylor expansion.

Our function $F_{\tau_{k}}$ is nearly linear, but not quite. Let's compute the Newton Step. We observe that the Jacobian is the linear operator

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
\operatorname{Diag}(S) & 0 & \operatorname{Diag}(X)
\end{array}\right]
$$

Moreover, since $\left(x^{k}, z^{k}, s^{k}\right) \in \mathcal{F}^{0}$, we have that

$$
F_{\tau_{k}}\left(x^{k}, z^{k}, s^{k}\right)=\left[\begin{array}{c}
A x^{k}-b \\
A^{\top} z^{k}+s^{k}-c \\
x^{k} \circ s^{k}-\tau_{k} \mathbf{1}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
x^{k} \circ s^{k}-\tau_{k} \mathbf{1}
\end{array}\right]
$$

Let's drop subscripts. Then, on one can verify that the Newton satisfies

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
\operatorname{Diag}(S) & 0 & \operatorname{Diag}(X)
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta z \\
\Delta s
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-x \circ s+\tau \mathbf{1}
\end{array}\right]
$$

Some remarks

1. $A \Delta x=0$, and that $A^{\top} \Delta z+\Delta_{s}=0$.
2. This implies that $\left(x^{+}, z^{+}, s^{+}\right):=(x+\Delta x, z+\Delta z, s+\Delta s)$ satisfies

$$
A x^{+}-b=0 \quad \text { and } \quad A^{\top} z^{+}+s-c=0
$$

3. We also have

$$
s \circ \Delta x+x \circ \Delta s=-x \circ s+\tau 1
$$

and thus

$$
\begin{aligned}
x^{+} \circ s^{+} & =x \circ s+(\circ \Delta x+x \circ \Delta s)+\Delta x \circ \Delta s \\
& =x \circ s-x \circ s+\tau \mathbf{1}+\Delta x \circ \Delta s
\end{aligned}
$$

4. Thus,

$$
F_{\tau}\left(x^{+} \circ s^{+}\right)=\left[\begin{array}{c}
0 \\
0 \\
\Delta x \circ \Delta s
\end{array}\right]
$$

In other words, if we can argue that $\Delta x \circ \Delta s$ is "negligible", then the Newton step produces an almost exact solution.
A more concrete analysis would be to study the term

$$
\begin{aligned}
n \mu(x+\alpha \Delta x, s+\alpha \Delta x) & =\langle x+\Delta x, s+\Delta s\rangle \\
& =\langle x, s\rangle+\alpha(\langle x, \Delta s\rangle+\langle s, \Delta x\rangle)+\alpha^{2}\langle\Delta s, \Delta x\rangle
\end{aligned}
$$

The last term in the above display vanishes, as shown by the above

$$
0=\Delta x^{\top}\left(A^{\top} \Delta z+\Delta s\right)=(A \Delta x)^{\top} z+\langle\Delta x, \Delta s\rangle=\langle\Delta x, \Delta\rangle
$$

Moreover, since $s \circ \Delta x+x \circ \Delta s=-x \circ s+\tau \mathbf{1}$, we have by summing that

$$
\langle x, \Delta s\rangle+\langle s, \Delta x\rangle=-\langle x, x\rangle+\tau n=-(1-\sigma)\langle x, s\rangle
$$

where the last line uses $n \tau=n \sigma \mu=\sigma n \tau=\sigma\langle x, s\rangle$. Hence,

$$
n \mu(x+\alpha \Delta x, s+\alpha \Delta x)=n \mu(x, s)(1-\alpha(1-\sigma))
$$

Hence, if one can show that $(1-\alpha) \alpha \geqslant C(n)>0$ for some constant depending on the dimension, then we see that

$$
n \mu\left(x^{k+1}\right) \leqslant(1-C(n))^{k} n \mu\left(x^{0}\right)
$$

giving us the rate of decrease. One can then show with more technical work that $\alpha=\Omega(1 / n)$ while maintaining the $\mathcal{N}_{-\infty}(\gamma)$ invariant.

References

