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25 Enter interior point methods

In the last lecture, we discussed Newton’s method. Although it enjoys a fast local
convergence guarantee, global convergence of Newton’s method is not guaranteed.
In this lecture, we’ll introduce interior point methods, which can be thought of as an
extension of Newton’s method to ensure global convergence. We will first introduce
the main idea of barrier methods at great generality, before we specialize our analysis to
linear programming.

25.1 Barrier methods

Barrier methods replace inequality constraints with a so-called barrier function that
is added to objective function of the optimization problem. Consider the following
optimization problem:

min
x

f (x)

s.t. x ∈ Ω,
gj(x) 6 0 , j = 1, 2, · · · , r ,

where f : Rn → R, gj : Rn → R are given functions. The function f is continuous, and
Ω is a closed set. For the rest of the lecture, we assume convex gj and Ω = Rn. And we
denote x∗ as the optimal solution of the problem.
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Definition 25.1 (Interior of the constraint region). The interior (relative to Ω) of the
constraint region is defined as S = {x ∈ Ω : gj(x) < 0, j = 1, 2, · · · , r}.

Assuming nonempty and convex S, we define a so-called barrier function B(x)
defined on S, such that B(x) is continuous the function blows up as we approach the
boundary of the constraint region. More formally, limgj(x)→0_ B(x) = ∞. Two most
common examples are logarithmic barrier function and inverse barrier function:

Logarithmic: B(x) = −
r

∑
j=1

ln{−gj(x)} (1)

Inverse: B(x) = −
r

∑
j=1

1
gj(x)

. (2)

Both of them are convex if all gj(x) are convex.
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Figure 1: Form of a barrier term

Given a barrier function B(x), define a new cost function fε(x) = f (x) + εB(x),
where ε is a positive real number. Then we can eliminate the inequality constraints in
the original problem and obtain the following problem:

min
x

fε(x)

s.t. x ∈ Ω
(3)

The form of the barrier term εB(x) is illustrated in Figure 1.
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The barrier method is defined by introducing a sequence {εt} such that 0 <
εt+1 < εt for t = 0, 1, 2, ... and εt → 0. Then we find a sequence {xt} such that
xt ∈ arg minx∈S fεt(x). Note that the barrier term εtB(x) goes to zero for all interior
points x ∈ S as εt → 0, allowing xt to get increasingly closer to the boundary. Therefore,
intuitively, xt should approach x∗ no matter x∗ is in the interior or on the boundary of S.
Its convergence is formalized in the following proposition.

Proposition 25.2. Every limit point of a sequence {xt} generated by a barrier method is a
global minimum of the original constrained problem.

Proof. See Proposition 5.1.1 of [Ber16]. �

The previous proposition shows that the global optima of our barrier problems
converge to the global constrained optimum. But how do we solve this sequence of
optimization problems. The key intuition is this. An initial interior point can often be
obtained easily for some large enough ε0. Then in each iteration, we can use xt as an
initialization to find xt+1 by Newton’s method. If εt is close to εt+1, we expect that xt is
also close to xt+1. Therefore, we have reason to hope that xt is in the local convergence
region for Newton’s method. In this manner we can extend the local convergence
guarantee of Newton to a more global property.

25.2 Linear programming

After sketching the basic idea in full generality, we will now tailor the logarithmic
barrier method to the linear programming (LP) problem defined as follows:

LP :
min

x
c>x

s.t. Ax > b
(4)

Here, A ∈ Rm×n with m > n and rank(A) = n. Denote x∗ as the optimal point.
First, we write out the augmented cost function by the logarithmic barrier method,

i.e.,

fε(x) = c>x− ε
m

∑
j=1

ln
(

A>j x− b
)

. (5)

where A>j is the j-th row of A. Define x∗ε = argminx fε(x).

Fact 25.3. The optimal point x∗ε exists and is unique for any ε > 0.

Proof. We can easily check that fε(x) is convex (as a sum of two convex functions).
Therefore, the minimizer x∗ε must exist and is unique.

To show the convexity of fε, we can check the second-order derivative, which is
positive definite as shown in (7) later. �
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25.2.1 Central path

The central path of the LP problem in 4 is depicted by the set of {x∗ε |ε > 0}, as shown
in Figure 2.

x∗∞

x∗

Figure 2: The central path

Our goal is to design an algorithm that will approximately follow the central path.
Assume that we already have a “good enough” initial point, then at every step, we
apply one step of Newton’s method. To guarantee that the algorithm converges, we
need to answer the following two questions:

• Under what conditions does the single-step Newton method work?

• How should we update ε?

25.2.2 Newton decrement

To apply Newton’s method, first we need to find out the first-order and second-order
derivatives of fε. Note that

∇ fε(x) = c− ε
m

∑
j=1

Aj

A>j x− b
, c− εA>S−11 (6)

∇2 fε(x) = εA>S−2A = ε
m

∑
j=1

Aj A>j
s2

j
(7)

where 1 = [1, 1, · · · , 1]> ∈ Rm×1, and S = diag{s1, . . . , sm} is the diagonal matrix of
slack quantities sj = A>j x− b.

Recall the Newton update

x̄ = x− [∇2 fε(x)]−1∇ fε(x) = x− [εA>S−2A]−1
(

c− εA>S−11
)

. (8)

Recall that Newton’s method finds the solution by making the first-order condi-
tion zero. To measure how much the Newton update will decrease the first-order
approximation, we introduce the concept of Newton decrement.
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Define the Newton decrement q(x, ε) as

q2(x, ε) = ∇ fε(x)>[∇2 fε(x)]−1∇ fε(x) . (9)

Equivalently,

q(x, ε) =
∥∥∥[∇2 fε(x)]−1/2∇ fε(x)

∥∥∥
2

=
∥∥∥∇2 fε(x)−1∇ fε

∥∥∥
∇2 fε(x)

,

where ‖x‖H =
√

x>Hx. The last identity reveals that we can think of the Newton
decrement as the magnitude of the Newton step measured in the local norm of the
Hessian.

Note that the Newton decrement also relates to the difference between fε(x) and the
minimum of its second-order approximation:

fε(x)−min
x̄

(
fε(x) +∇ fε(x)>(x̄− x) + (x̄− x)>∇2 fε(x)(x̄− x)

)
= fε(x)−

(
fε(x)− 1

2
∇ fε(x)>[∇2 fε(x)]−1∇ fε(x)

)
=

1
2
∇ fε(x)>[∇2 fε(x)]−1∇ fε(x) ,

1
2

q2(x, ε). (10)

We’ll use the Newton decrement to find out the conditions for the convergence
guarantee of the algorithm.

25.2.3 An update rule and its convergence guarantee

We’ll now come up with an update rule that can guarantee convergence if some initial
conditions are satisfied. To develop the update rule, we first introduce the following
propositions.

Proposition 25.4. Assume Ax > b and q(x, ε) < 1, then we have

c>x− c>x∗ 6 2εn. (11)

In particular, if we maintain that xt is interior point satisfying Axt > b, and
q(xt, εt) < 1, then c>xt converges to c>x∗ as εt goes to 0, i.e., xt converges to global
optimum. However, the condition q(xt, εt) < 1 is not trivial.

Proposition 25.5. If Ax > b, and q(x, ε) < 1, then the pure Newton iterate step x̄ satisfies,

q(x̄, ε) 6 q(x, ε)2 (12)

It ensures that q(x̄, ε) < 1 given q(x, ε) < 1 and x is interior point. But we also want
that q(x̄, ε̄) < 1 for some ε̄ < ε.
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Proposition 25.6. Assume q(x, ε) 6 1
2 , interior point Ax > b, put

ε̄ =

(
1− 1

6
√

n

)
ε, (13)

then we have

q(x̄, ε̄) 6
1
2

(14)

These propositions suggest the following update rule,

xt+1 = xt −∇2 fεt(x)−1∇ fεt(xt) (15)

εt =

(
1− 1

6
√

n

)
ε (16)

Theorem 25.7. Suppose (x0, ε0) satisfies Ax0 > b and q(x0, ε0) 6 1
2 , then the algorithm

converges in O(
√

n log(n/η)) iterations to η error, i.e., we have c>xt 6 c>x∗ + η after
O(
√

n log(n/η)) iterations.

Proof. As Newton step maintains xt+1 in the interior, by using the three propositions
above, we have

c>xt 6 c>x∗ + 2εtn

= c>x∗ + 2
(

1− 1
6
√

n

)t
ε0

6 c>x∗ + 2 exp
(
− t

6
√

n

)
ε0 (17)

Therefore, to have a error of η, t > 6
√

n
ε0

log 2n
η . We can then conclude that the algorithm

converges in O(
√

n log(n/η)) iterations to η error. �

The algorithm stated above is the so-called short-step method. Although theoretical
convergence rate is guaranteed, the combination of small decrease in ε and a single
Newton step is slow in practice. Instead, a more practical method is the so-called
long-step method, where ε is reduced in faster rate and several Newton steps are taken
per iteration.
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