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23 Newton’s method

Up until now, we have only considered first order methods to optimize functions. Now,
we will utilize second order information to achieve a faster rate of convergence.

As always, our objective is to minimize a function f: R" — IR. The basic idea
of Newton’s Method is to set the first-order Taylor expansion of the gradient to zero:
F(x) = Vf(x) = 0. This leads to an iterative update step that will (under certain
conditions) lead to a significantly faster convergence rate than gradient descent methods.

To illustrate the point, consider a single variable function ¢: R — R. Our goal is
to solve the non-linear equation ¢(x) = 0. From Taylor’s theorem, we can express the
first-order form of ¢(x) as

¢(x) = ¢(x0) + ¢'(x) - (x = x0) + o(|x — xo])
given 6 = x — xo we equivalently have that
¢(x0 +6) = @(x0) + ¢'(x) - 5+ 0(|0])
Disregarding the o(|d|) term, we solve (over ) the following objective:

¢(x0) + ¢’ (x0)0 =0

p(xt)
¢’ (xt)

Then, § = — (7)0,((’;%)) , leading to the iteration x;1 = x; —



We can similarly make an argument for a multi variable function F : RY — R. Our
goal is to solve F(x) = 0. Again, from Taylor’s theorem we have that

F(x+A) = F(x) + Jr(x)A + o([|A]])
where Jr is the Jacobian. This gives us A = —J;'(x)F(x), and the iteration

Xp1 = xt — J5 (xe) F(xt)

Given f: R — R, Newton’s method applies this update to F(x) = Vf(x) = 0. It
uses the update rule

Xpp1 = % — V2 (x1) TV f(xr)

A Newton step minimizes the second order Taylor approximation

flx) ~ f(x) + V(x) T (x —xp) + %(x —x;) ' V2 (x) (x — xy)

Now, we will show that Newton’s method converges to a local minimum, given a
starting point that is within a neighborhood of that point.

Theorem 23.1. Given f : R" — R and assuming that

1. f is twice continuously differentiable

2. V2f(x) is Lipschitz: ||[V?f(x) — V2f(x")]| < ||x — x|

3. dx*s.t. VF(x*) = 0and V2f(x*) = al and ||x° — x*|| < §
Then, [[xi1 — x|l < Lljxs — x°|2
Proof. Given that V f(x*) = 0, we have that

Xppp — XY =xp — xF = V2 f(x) IV ()
= V2 () V() (0 = x7) = (Vf () = V()]
This implies that
Iresr =251 < IV2FGe) T IV () (e = %) = (Vf () = V()|

Claim 23.2. [ V2 (x1) (xs — x) — (V(xe) = V(")) | < LI — x*|]

Proof. Applying the integral remainder form of Taylor’s theorem to V f(x;) we have
that

VHG) ~ Vi) = [ VG x0) - (0 - ¥y



We therefore have that
IV2f () (e — x*) = (Vf(x1) = Vf(x"))|
1
= | /0 [V2f(xi) = V2 f (x4 7 (6" — x0))] (a0 — x*)dy |

D /01 IV2f () = V2f (e o (2" = x) |- llxe — x|y

1
< ( /0 vdv) [lxp — x*||? (V2f(x;) is Lipschitz)

Claim 23.3. ||V2f(x;) 7| < 2
Proof. By the Wielandt-Hoffman Theorem,

Amin (V2 F(x4)) = Ain (V2 (x)| < V2 F () = V2f(x) |

|xr — x| (V2f(x;) is Lipschitz)

|

|
Thus, for ||x; — x*|| < § and given that V2f(x*) > al, this implies that A, (V2f(x;)) =
4. Hence, || V2f(x;) 1] < 2. ]

<
<

Putting the two claims together, we have that

21

xrpr =2 < - Sl — 217

1
— Ll = x|
14
|

Note that we did not need convexity in the proof. Given that we are within a
neighborhood of the local minimum x*, then we can achieve € error in just O(loglog 1)
iterations. (this is called quadratic convergence.)

23.1 Damped update

In general, Newton’s method can be quite unpredictable. For example, consider the

function
f(x) =Vx2+1

essentially a smoothed version of the absolute value |x|. Clearly, the function is min-
imized at x* = 0. Calculating the necessary derivatives for Newton’s method, we
find
x
/

X) =
fx) =

Frx) = (1+22)372,




Note that f(x) is strongly convex since its second derivative strictly positive and 1-
smooth (|f/(x)| < 1). The Newton step for minimizing f(x) is

f'(xt) _ .3

xtH:xt—f”(x)— e

The behavior of this algorithm depends on the magnitude of x;. In particular, we have
the following three regimes

|x;| <1 Algorithm converges cubically
|x;| =1 Algorithm oscillates between —1 and 1
|x¢| >1 Algorithm diverges

This example shows that even for strongly convex functions with Lipschitz gradients
that Newton’s method is only guaranteed to converge locally. To avoid divergence, a
popular technique is to use a damped step—size:

Xpp1 = xt — 1 V2f(x) TV (xp)

17+ can be chosen by backtracking line search. Usually though 1 = 1 is a good first choice
since, if you are in a region of convergence, you are guaranteed quadratic convergence.

23.2 Quasi-Newton methods

Let’s compare gradient descent and Newton’s method side by side.

Xpp1 = Xt — NV f(xp) (Gradient descent)

Xpp1 = X — V2f(x) IV F(x4) (Newton’s method)

We can think of gradient descent as a Newton update in which we approximate

V2f(x:)~! by a scaled version of the identity. That is, gradient descent is equivalent to
Newton’s method when V2f(x;) ! = ;I where I is the identity matrix.

Quasi-Newton methods take the analogy a step further by approximating the Hes-

sian by some other matrix. The idea in doing so is to avoid an expensive matrix inversion
at each step. What we want is an approximation

Fon () 2 Far) + V)T (3 = 1) 5 (= ) By (= )
such that:
1. Vg (xt) = Vf(xe).

It seems reasonable that our approximation should be the same up to first order.

2. Vg (x-1) = Vf(x1)

This condition states that the gradient should still be correct at the previous iterate.

4



If the two last gradients are correct, we can expect our Hessian approximation to be
reasonable along the direction x; — x;_1. This is called a secant approximation which can
be written as

V fp, (x041) = Vf(xr) — By (x40 — x1)

If we let

St = Xt41 — Xt
yr = Ve, (xe1) — Vf(x1)

Then we arrive at the Secant Equation

st = Bty

There could be multiple B; that satisfy this condition. We can enforce other constraints
to help narrow down on a particular choice. Some popular requirements are requiring
B; to be positive definite, making sure B; is as close to B;_; as possible for some
appropriate metric, or requiring B; to be a low-rank update of previous iterates where
the update can be done via the Sherman-Morrison formula. One of the most successful
implementations of this is called BEGS named after Broyden, Fletcher, Goldfarb, Shanno
and its limited—-memory counterpart, L-BFGS.
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