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23 Newton’s method

Up until now, we have only considered first order methods to optimize functions. Now,
we will utilize second order information to achieve a faster rate of convergence.

As always, our objective is to minimize a function f : Rn → R. The basic idea
of Newton’s Method is to set the first-order Taylor expansion of the gradient to zero:
F(x) = ∇ f (x) = 0. This leads to an iterative update step that will (under certain
conditions) lead to a significantly faster convergence rate than gradient descent methods.

To illustrate the point, consider a single variable function ϕ : R → R. Our goal is
to solve the non-linear equation ϕ(x) = 0. From Taylor’s theorem, we can express the
first-order form of ϕ(x) as

ϕ(x) = ϕ(x0) + ϕ′(x) · (x− x0) + o(|x− x0|)

given δ = x− x0 we equivalently have that

ϕ(x0 + δ) = ϕ(x0) + ϕ′(x) · δ + o(|δ|)

Disregarding the o(|δ|) term, we solve (over δ) the following objective:

ϕ(x0) + ϕ′(x0)δ = 0

Then, δ = − ϕ(x0)
ϕ′(x0)

, leading to the iteration xt+1 = xt − ϕ(xt)
ϕ′(xt)

.
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We can similarly make an argument for a multi variable function F : Rd → R. Our
goal is to solve F(x) = 0. Again, from Taylor’s theorem we have that

F(x + ∆) = F(x) + JF(x)∆ + o(‖∆‖)

where JF is the Jacobian. This gives us ∆ = −J−1
F (x)F(x), and the iteration

xt+1 = xt − J−1
F (xt)F(xt)

Given f : R → R, Newton’s method applies this update to F(x) = ∇ f (x) = 0. It
uses the update rule

xt+1 = xt −∇2 f (xt)
−1∇ f (xt)

A Newton step minimizes the second order Taylor approximation

f (x) ≈ f (xt) +∇ f (xt)
>(x− xt) +

1
2
(x− xt)

>∇2 f (xt)(x− xt)

Now, we will show that Newton’s method converges to a local minimum, given a
starting point that is within a neighborhood of that point.

Theorem 23.1. Given f : Rn → R and assuming that

1. f is twice continuously differentiable

2. ∇2 f (x) is Lipschitz: ‖∇2 f (x)−∇2 f (x′)‖ 6 ‖x− x′‖

3. ∃x∗ s.t. ∇ f (x∗) = 0 and ∇2 f (x∗) � αI and ‖x0 − x∗‖ 6 α
2

Then, ‖xt+1 − x∗‖ 6 1
α‖xt − x∗‖2

Proof. Given that ∇ f (x∗) = 0, we have that

xt+1 − x∗ = xt − x∗ −∇2 f (xt)
−1∇ f (xt)

= ∇2 f (xt)
−1[∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))]

This implies that

‖xt+1 − x∗‖ 6 ‖∇2 f (xt)
−1‖ · ‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖

Claim 23.2. ‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖ 6 1
2‖xt − x∗‖2

Proof. Applying the integral remainder form of Taylor’s theorem to ∇ f (xt) we have
that

∇ f (xt)−∇ f (x∗) =
∫ 1

0
∇2 f (xt + γ(x∗ − xt)) · (xt − x∗)dγ
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We therefore have that

‖∇2 f (xt)(xt − x∗)− (∇ f (xt)−∇ f (x∗))‖

= ‖
∫ 1

0
[∇2 f (xt)−∇2 f (xt + γ(x∗ − xt))](xt − x∗)dγ‖

6
∫ 1

0
‖∇2 f (xt)−∇2 f (xt + γ(x∗ − xt))‖ · ‖xt − x∗‖dγ

6
(∫ 1

0
γdγ

)
‖xt − x∗‖2 (∇2 f (xt) is Lipschitz)

=
1
2
‖xt − x∗‖2

�

Claim 23.3. ‖∇2 f (xt)−1‖ 6 2
α

Proof. By the Wielandt-Hoffman Theorem,

|λmin(∇2 f (xt))− λmin(∇2 f (x∗))| 6 ‖∇2 f (xt)−∇2 f (x∗)‖
6 ‖xt − x∗‖ (∇2 f (xt) is Lipschitz)

Thus, for ‖xt− x∗‖ 6 α
2 and given that∇2 f (x∗) � αI, this implies that λmin(∇2 f (xt)) >

α
2 . Hence, ‖∇2 f (xt)−1‖ 6 2

α . �

Putting the two claims together, we have that

‖xt+1 − x∗‖ 6 2
α
· 1

2
‖xt − x∗‖2 =

1
α
‖xt − x∗‖2

�

Note that we did not need convexity in the proof. Given that we are within a
neighborhood of the local minimum x∗, then we can achieve ε error in just O(log log 1

ε )
iterations. (this is called quadratic convergence.)

23.1 Damped update

In general, Newton’s method can be quite unpredictable. For example, consider the
function

f (x) =
√

x2 + 1

essentially a smoothed version of the absolute value |x|. Clearly, the function is min-
imized at x∗ = 0. Calculating the necessary derivatives for Newton’s method, we
find

f ′(x) =
x√

x2 + 1
f ′′(x) = (1 + x2)−3/2 .
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Note that f (x) is strongly convex since its second derivative strictly positive and 1-
smooth (| f ′(x)| < 1). The Newton step for minimizing f (x) is

xt+1 = xt −
f ′(xt)

f ′′(x)
= −x3

t .

The behavior of this algorithm depends on the magnitude of xt. In particular, we have
the following three regimes

|xt| < 1 Algorithm converges cubically
|xt| = 1 Algorithm oscillates between −1 and 1
|xt| > 1 Algorithm diverges

This example shows that even for strongly convex functions with Lipschitz gradients
that Newton’s method is only guaranteed to converge locally. To avoid divergence, a
popular technique is to use a damped step–size:

xt+1 = xt − ηt∇2 f (xt)
−1∇ f (xt)

ηt can be chosen by backtracking line search. Usually though η = 1 is a good first choice
since, if you are in a region of convergence, you are guaranteed quadratic convergence.

23.2 Quasi-Newton methods

Let’s compare gradient descent and Newton’s method side by side.

xt+1 = xt − ηt∇ f (xt) (Gradient descent)

xt+1 = xt −∇2 f (xt)
−1∇ f (xt) (Newton’s method)

We can think of gradient descent as a Newton update in which we approximate
∇2 f (xt)−1 by a scaled version of the identity. That is, gradient descent is equivalent to
Newton’s method when ∇2 f (xt)−1 = ηt I where I is the identity matrix.

Quasi-Newton methods take the analogy a step further by approximating the Hes-
sian by some other matrix. The idea in doing so is to avoid an expensive matrix inversion
at each step. What we want is an approximation

f̂Bt(x) ≈ f (xt) +∇ f (xt)
>(x− xt) +

1
2
(x− xt)B−1

t (x− xt)

such that:

1. ∇ f̂Bt(xt) = ∇ f (xt).
It seems reasonable that our approximation should be the same up to first order.

2. ∇ f̂Bt(xt−1) = ∇ f (xt−1)
This condition states that the gradient should still be correct at the previous iterate.

4



If the two last gradients are correct, we can expect our Hessian approximation to be
reasonable along the direction xt − xt−1. This is called a secant approximation which can
be written as

∇ f̂Bt(xt+1) = ∇ f (xt)− B−1
t (xt+1 − xt)

If we let

st = xt+1 − xt

yt = ∇ f̂Bt(xt+1)−∇ f (xt)

Then we arrive at the Secant Equation

st = Btyt

There could be multiple Bt that satisfy this condition. We can enforce other constraints
to help narrow down on a particular choice. Some popular requirements are requiring
Bt to be positive definite, making sure Bt is as close to Bt−1 as possible for some
appropriate metric, or requiring Bt to be a low–rank update of previous iterates where
the update can be done via the Sherman–Morrison formula. One of the most successful
implementations of this is called BFGS named after Broyden, Fletcher, Goldfarb, Shanno
and its limited–memory counterpart, L–BFGS.
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