
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

October 15, 2018

22 Non-convex constraints II: projected gradient descent

Last time we discussed optimization of a convex function f over non-convex sets. A
typical example for such a problem is min ‖Ax− y‖2

2 subject to ‖x‖0 6 s. Another type
of non-convex optimization is to minimize a non-convex function over a convex set. A
typical example for this kind of non-convex optimization is known as l0-minimization
where min ‖x‖0 subject to an affine convex constraint like Ax = y. In sum, the l0-
minimization is:

min
Ax=y

‖x‖0

One option for solving the above non-convex optimization problem is to relax the
l0-objective to the convex l1-objective as:

min
Ax=y

‖x‖1

Note that under appropriate assumptions on A, x and y, we observed that `1-
minimization still gives the right answer (assumptions such as RIP and the restricted
nullspace property).

In our setting, we have

1

nonconvex constraint

↓

cvx relaxation

↓

PGD (Projected Gradient Descent),
or more directly, nonconvex constraint→ PGD.

We discuss some takeaways from the jupyter notebook. While convex relaxations can
be solved efficiently (e.g., using interior point methods), scaling to large problem

instances is an issue. Hence it makes sense to consider first order methods such as
projected gradient descent (PGD) to speed up computation. We find that it works

directly with projections onto the non-convex set. And when we’re running PGD, it’s
natural to ask whether we need the convex relaxation in the first place or can just

directly run PGD for the non-convex set.
Consider the test problem of form y = Ax with s-sparse x where A has dimension
n× d and we sample the entries of A as i.i.d. Gaussians so the matrix satisfies the

restricted isometry property if we take enough samples n. We can check how many
samples are needed for `1-relaxation to work. We have that an i.i.d. Gaussian matrix

requires O(s log d/s) rows to satisfy RIP, so this corresponds to n = O(s log d/s)
samples. The running time of using just the interior point methods is somewhat slow.

• d = 100, n = 50: 10 ms,

• d = 1000, n = 500: 5-6 seconds,

• d = 4000, n = 2000: 112 seconds.

Therefore, to solve very large instances, we should also consider first-order methods.
We may directly run projected gradient descent with the non-convex set of sparse

vectors, also known as Iterative Hard Thresholding since the projection step (to find the
closest s-sparse vector) corresponds to hard thresholding the vector (keep only the s
largest entries and set the rest to 0). It is 1000 times faster as it took 0.0357 seconds.

Now, we discuss the Iterative Hard Thresholding (IHT) which is known as a projected
gradient descent (PGD) for sparse vectors.

Iterative Hard Thresholding (IHT) is used with Gradient Descent for the following
problem.

Given the setup:

y = Ax + e (1)

where y ∈ RM, x ∈ RN, A ∈ RM×N, e is observation noise, the goal is to estimate x
given y and A when M << N and x is approximately K-sparse.

2

The IHT algorithm uses the iteration

xn+1 = PK(xn + A>(y− Axn)) (2)

where PK is a hard thresholding operator that keeps the largest K elements of a vector.
Consider the following objective function.

f (x) =
1
2
‖Ax− y‖2

2 (3)

∇ f (x) = A>(Ax− y) (4)

If it is possible to directly optimize over nonconvex sets, then we don’t need convex
relaxation.

We want to show that the algorithm IHT outputs a solution. The algorithm is defined as:

IHT(y, A, t, s)

x1 ← 0
for i = 1, · · · , t,

x̃i+1 ← xi − A>(Ax− y)

xi+1 ← PS(x̃i+1)

return x̂ ← xt+1

Note that Ps is a projection onto a set of s-sparse vectors. In the rest of the lecture we
will see how this projection works and how fast the method is.

We study a nice property of matrices, the Restricted Isometry Property. It is useful since
it implies that the difference between two s-sparse vectors cannot be mapped to 0, and

the RIP also implies the restricted nullspace property. Here, the Restricted Isometry
Property allows optimization over nonconvex sets.

Definition 22.1. RIP: matrix A satisfies the (s, δ)-RIP if for all s-sparse vectors we have:

(1− δ)‖x‖2
2 6 ‖Ax‖2

2 6 (1 + δ)‖x‖2
2

Consequences: For all supports S of size s, we have:

‖I − X>S XS‖2 6 δ

where XS is X restricted to S (for detailed description please see the notes for lecture 21).
Consider the following setup:

• y = Ax∗ + e

3

• x∗ is s-sparse with support S∗

• A has (3s, 1
4)-RIP

• e is arbitrary noise.

Then the following holds,

Theorem 22.2.
‖xi+1 − x∗‖2 6

1
2
‖xi − x∗‖2 + max

|S|63s
‖A>S e‖2

Proof. Let Si be the support of (xi) and let S′ = Si+1 ∪ Si ∪ S∗ (so |S′| 6 3s) . Then:

‖xi+1 − x∗‖2 6 ‖xi+1 − x̃i+1
S′ ‖2 + ‖x̃i+1

S′ − x∗‖2 (by triangle inequality)

6 2‖x̃i+1
S′ − x∗‖2

= 2‖xi
S′ − A>S′(Axi − y)− x∗‖

= 2‖xi − A>S′(AS′xi − AS′x∗ − e)− x∗‖
= 2‖xi − x∗ − A>S′AS′(xi − x∗) + A>S′e‖
6 2‖I − A>S′AS′(xi − x∗)‖2 + 2‖A>S′e‖2

6 2δ‖(xi − x∗)‖2 + 2 max
|S|63s

‖A>S e‖2

�

The second inequality follows from the first inequality because xi+1 is the s-sparse
projection of x̃i+1. In particular, this also means that xi+1 is the best s-sparse

approximation of x̃i+1
S′ and hence we have:

‖xi+1 − xi+1
S′ ‖ 6 ‖x̃

i+1
S′ − x∗‖2

In the theorem above, we have shown that the error goes down by a factor 1/2 in every
iteration (up to the noise threshold). From there, it is fairly straightforward to get a

linear convergence rate as in the following corollary:

Corollary 22.3. ‖x̂ − x∗‖2 6 (1
2)

t‖x∗‖2 + 5‖e‖2 so t = log ‖x
∗‖2
ε iterations suffice for

‖x̂− x∗‖2 6 ε + 5‖e‖2.

We have a linear rate and PSG, but the analysis looks somewhat different (no
convexity/smoothness) and we did not need a step size.

Now consider function f = 1
2‖Ax− y‖2

2 and hence ∇ f (x) = A>(Ax− y).

4

Definition 22.4. Smoothness:

f (x + ∆) 6 f (x) + 〈∇ f (x), ∆〉+ L
2
‖∆‖2

2

which is valid for all ∆ ∈ Rd.

What does the smoothness mean for the above function f ?

1
2
‖A(x + ∆)− y‖2

2 6 ‖Ax− y‖2
2 + ∆>A>(Ax− y) +

L
2
‖δ‖2

2

then:

1
2
(x + ∆)>A>A(x + ∆) +

1
2

y>y 6
1
2

x>A>Ax− y>Ax +
1
2

y>y + ∆>A>Ax− ∆>A>y +
L
2
‖∆‖2

2

hence:

1
2

∆>A>A∆ 6
L
2
‖∆‖2

2,

and as a result:

‖A∆‖2
2 6 L‖∆‖2

2

Taking L = 1 + δ gives that the above equals

L/` ≈ 1 + δ

1− δ
≈ 1.

Note that the above inequality relates being smooth with following the RIP, just replace
the condition "for any4" (for smoothness) by "for any s-sparse4" (for RIP). We have

similar results for strong convexity.

Definition 22.5. Strong Convexity:

f (x + ∆) > f (x) + 〈∇ f (x), ∆〉+ l
2
‖∆‖2

2

which is valid for all ∆ ∈ Rd.

We can easily conclude that strong convexity is equivalent to ‖A∆‖2
2 > l‖∆‖2

2.

Definition 22.6. Restricted Strong Convexity (RSC):

f (x + ∆) > f (x) + 〈∇ f (x), ∆〉+ l
2
‖∆‖2

2

which is valid for all s-sparse ∆.

5

We can say that:

RIP = RSC + RSM,

with very good (L ≈ 1 + δ) condition number L/` (hence constant step size ≈ 1/L).
There is a lot of work on weakening this assumption and further constraints sets.

Convex relaxation involves mostly optimal dependence on condition number. PGD can
be made to work for arbitrary condition number but with a worse statistical rate. Can

we match convex relaxation with non-convex PGD? Yes!
Given the sparsity condition, it is possible to do hard thresholding in O(d) time. Given
the low-rank condition, one can compute the SVD and find the largest singular values

and for a d1 × d2 matrix, in O(d1d2 min(d1, d2)) time.

Definition 22.7. Group Sparsity: We are given a family of groups Gi ⊆ [d], support
supp(x∗) = ∪j∈JGj for some |J| 6 g. This is NP-hard via set cover.

Definition 22.8. Graph Sparsity: Given graph G defined on [d] (nodes are indices in
{1, · · · , d}), supp(x∗) is a connected subgraph in G. Here, projection on set is NP-hard
(Steiner trees).

Definition 22.9. Approximate Projection: (Tail approximation) Given input x̃ ∈ Rd, find
x ∈ C (C is the constraint set) such that

‖x− x̃‖2 6 α min
x′∈C
‖x′ − x̃‖2.

For x∗ that is 1-sparse and the problem

y = Ax∗,

A = ± 1√
n gives n = O(log d) and then we have RIP, and PGD should work.

In the first iteration of PGD,

x′ ← 0
x2 ← P̂S(A>y)

where A>y = A>Ax∗ = b.
Consider the following setup.

b1 = 1

E[b2
i] =

1
n

E[‖b‖2
2] = 1 +

d− 1
n

.

The approximate error of the best projection is on the order d−1
n .

6

Definition 22.10. Head Projection:
Given x̃ ∈ Rd, find a support S such that

‖x̃S‖2 > β max
S′∈Supp(C)

‖x̃S′‖2. (5)

When this is combined with approximate projection, PGD still works.

References

7

	Non-convex constraints II: projected gradient descent

