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21 Non-convex constraints I

Recall that convex minimization refers to minimizing convex functions over convex
constraints. Today we will begin to explore minimizing convex functions with non-
convex constraints. It is difficult to analyze the impact of “non-convexity" in general,
since that can refer to anything that is not convex, which is a very broad class of
problems. So instead, we will focus on solving least squares with sparsity constraints:

min
‖x‖06s

‖Ax− y‖2
2

for y ∈ Rn, A ∈ Rn×d, and x ∈ Rd where d < n. We will show that in general even this
problem is hard to solve but that for a restricted class of problems there is an efficient
convex relaxation.

Least squares with sparsity constraints can be applied to solving compressed sensing
and sparse linear regression, which are important in a variety of domains. In compressed
sensing, A is a measurement model and y are the measurements of some sparse signal
x. Compressed sensing is applied to reduce the number of measurements needed for,
say, an MRI because by including a sparsity constraint on x we are able to recover the
signal x in fewer measurements.

In sparse linear regression, A is the data matrix and y is some outcome variable. The
goal of sparse linear regression is to recover a weights x on a sparse set of features that
are responsible for the outcome variable. In genetics, A could be the genes of a patient,
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and y is whether they have a particular disease. Then the goal is to recover a weights x
on a sparse set of genes that are predictive of having the disease or not.

When there is no noise in the linear equations, we can simplify the problem to

min ‖x‖0

Ax = y

21.1 Hardness

Even this simplification is NP-hard, as we will show with a reduction to exact 3-cover,
which is NP-complete. Our proof is from [FR13].

Definition 21.1. The exact cover by 3-sets problem is given a collection {Ti} of 3-element
subsets of [n], does there exist an exact cover of [n], a set z ⊆ [d] such that ∪j∈zTj = [n]
and Ti ∩ Tj = ∅ for j 6= j′ ∈ z?

Definition 21.2. The support of a vector x is defined as

supp(x) = {i | xi 6= 0}.

Theorem 21.3. l0-minimization for general A and y is NP-hard.

Proof. Define matrix A as

Aij =

{
1 if i ∈ Tj

0 o.w

and y as the all ones vector. Note that from our construction we have ‖Ax‖0 6
3‖x‖0, since each column of A has 3 non-zeros. If x satisfies Ax = y, we thus have
‖x‖0 >

‖y‖0
3 = n

3 . Let us now run l0-minimization on A, y and let x̂ be the output. There
are two cases

1. If ‖x̂‖0 = n
3 , then y = supp(x̂) is an exact 3-cover.

2. If ‖x̂‖0 > n
3 , then no exact 3-cover can exist because it would achieve ‖x̂‖0 = n

3
and hence violate optimality of the solution derived through l0 minimization.

Thus, since we can solve exact 3-cover through l0 minimization, l0 minimization
must also be NP-hard. �
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21.2 Convex relaxation

Although l0-minimization is NP-hard in general, we will prove that for a restricted
class of A, we can relax l0-minimization to l1-minimization. First, define the set of
approximately sparse vectors with support S as those whose l1 mass is dominated by S.
Formally,

Definition 21.4. The set of approximately sparse vectors with support S is

C(S) = {∆ ∈ Rd | ‖∆S̄‖1 6 ‖∆S‖1}

where S̄ = [d]/S and ∆s is ∆ restricted to S,

(∆S)i =

{
∆i if i ∈ S
0 o.w

Recall that the nullspace of matrix A is the set null(A) = {∆ ∈ Rd | A∆ = 0}. The
nullspace is the set of "bad" vectors in our estimation problem. Consider a solution
Ax = y. If ∆ ∈ null(A), then x + ∆ is also a solution since A(x + ∆) = Ax + A∆ =
Ax = b. Thus, we focus on matrices whose nullspace only contains zero on the set of
sparse vectors that we care about.

Definition 21.5. The matrix A satisfies the restricted nullspace property (RNP) with
respect to the support S if C(S) ∪ null(A) = {0}.

With these definitions in place, we can now state our main theorem.

Theorem 21.6. Given A ∈ Rn×d and y ∈ Rn we consider the solution to the l0-minimization
problem x∗ = argminAx=y ‖x‖0. Assume x∗ has support S and let the matrix A satisfy the
restricted nullspace property with respect to S. Then given the solutions of the l1-minimization
problem x̂ = argminAx=y ‖x‖1 we have x̂ = x∗.

Proof. We first note that by definition both x∗ and x̂ satisfy our feasibility constraint
Ax = y. Letting ∆ = x̂− x∗ be the error vector we have A∆ = Ax̂− Ax∗ = 0, which
implies that ∆ ∈ null(A).

Our goal now is to show that ∆ ∈ C(S) then we would have ∆ = 0 from the restricted
nullspace property. First, since x̂ is optimal in l1 it follows that ‖x̂‖1 6 ‖x∗‖1. We then
have

‖x∗S‖1 = ‖x∗‖1 > ‖x̂‖1

= ‖x∗ + ∆‖1

= ‖x∗S + ∆S‖1 + ‖x∗S + ∆S‖1 by splitting the l1 norm,

= ‖x∗S + ∆S‖1 + ‖∆S‖1 by the support assumption of ‖x∗‖1,
> ‖x∗S‖1 − ‖∆S‖1 + ‖∆S‖1.

Hence ‖∆S‖1 > ‖∆S‖1, which implies ∆ ∈ C(S). �
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So far, so good. We have shown that the l1-relaxation works for certain matrices.
A natural question however is what kinds of matrices satisfy the restricted nullspace
property. In order to get a handle on this, we will study yet another nice property of
matrices, the so called restricted isometry property (RIP). Later, we will then see that
specific matrix ensembles satisfy RIP with high probability.

Definition 21.7. A matrix A satisfies the (s, δ)-RIP if for all s-sparse vectors x (‖x‖0 6 s),
we have

(1− δ)‖x‖2
2 6 ‖Ax‖2

2 6 (1 + δ)‖x‖2
2.

The intuition is that A acts like an isometry on sparse vectors (a true isometry would
have δ = 0). The RIP is useful since it implies that the difference between two s-sparse
vectors cannot be mapped to 0. By looking at the singular values of A we can derive the
following lemma.

Lemma 21.8. If A has (s, δ)-RIP, then

‖A>S AS − IS‖2 6 δ

for all subsets S of size s. Where

(AS)ij =

{
Aij if j ∈ S
0 o.w.

We now show that the RIP implies the restricted nullspace property.

Theorem 21.9. If the matrix A has the (2s, δ)-RIP, then it also has the restricted nullspace
property for all subsets S of cardinality |S| 6 s.

Proof. Let x ∈ null(A) be arbitrary but not equal to 0. Then we have to show that
x 6∈ C(S) for any S with |S| 6 s. In particular, let S0 be the set indices of the s largest
coefficients in x. It suffices to show that ‖xS0‖1 < ‖xS0

‖1 since it would then hold for
any other subset.

We write

S0 =

d d
s e−1⋃
j=1

Sj

where

• S1 is the subset of indices corresponding to the s largest entries in S0

• S2 is the subset of indices corresponding to the s largest entries in S0 \ S1

• S3 is the subset of indices corresponding to the s largest entries in S0 \ S1 \ S2

4



• etc. . .

So we have x = xS0 + ∑
j

xSj . We have decomposed x into blocks of size s. This is

sometimes called shelling. From RIP, we have

‖xS0‖
2
2 6

1
1− δ

‖AxS0‖
2
2.

Since x ∈ null(A) by assumption we have

A(xS0 + ∑
j>1

xSj) = 0

=⇒ AxS0 = −∑
j>1

AxSj .

Hence

‖xS0‖
2
2 6

1
1− δ

‖AxS0‖
2
2

=
1

1− δ
〈AxS0 , AxS0〉

=
1

1− δ ∑
j>1
〈AxS0 , AxSj〉

=
1

1− δ ∑
j>1
〈AxS0 ,−AxSj〉

=
1

1− δ ∑
j>1

(〈AxS0 ,−AxSj〉 − 〈xS0 , xSj〉) since 〈xS0 , xSj〉 = 0

=
1

1− δ ∑
j>1
〈xS0 , (I − A>A)xSj〉

6
1

1− δ ∑
j>1
‖xS0‖2δ‖xSj‖2 from Lemma 21.8.

So we have

‖xS0‖2 6
δ

1− δ ∑
j>1
‖xSj‖2. (1)

By construction, for each j > 1, we have

‖xsj‖∞ 6
1
S
‖XSj−1‖1

and hence
‖xsj‖2 6

1√
S
‖XSj−1‖1.
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Plugging into Equation 1, we get

‖xS0‖1 6
√

S‖xS0‖2

6

√
Sδ

1− δ ∑
j>1
‖xSj‖2

6
δ

1− δ ∑
j>1
‖xSj−1‖1

6
δ

1− δ
(‖xs0‖1 + ∑

j>1
‖xSj−1‖1)

which is equivalent to

‖xs0‖1 6
δ

1− δ
(‖xs0‖1 + ‖xs0‖1).

Simple algebra gives us ‖xs0‖1 6 ‖xs0‖1 as long as δ < 1
3 . �

Now that we’ve shown that if A has the RIP then l1-relaxation will work, we look at
a few examples of naturally occurring matrices with this property.

Theorem 21.10. Let A ∈ Rn×d be defined as aij ∼ N (0, 1) iid. Then the matrix 1√
n A has

(s, δ)-RIP for n at least O
(

1
δ2 s log d

s

)
.

The same holds for sub-Gaussians. We have similar results for more structured
matrices such as subsampled Fourier matrices.

Theorem 21.11. Let A ∈ Rn×d be a subsampled Fourier matrix. Then A has (s, δ)-RIP for n
at least O

(
1
δ2 s log2 s log d

)
.

This result is from [HR15] using work from [RV07, Bou14, CT06]. O
(

1
δ2 s log d

)
is

conjectured but open.
There is a lot more work on convex relaxations. For sparsity alone people have

studied many variations e.g.

• Basic pursuit denoising (BPDN) min ‖x‖1 such that ‖Ax− y‖2 6 ε

• Constrained LASSO min ‖Ax− y‖2
2 such that ‖x‖1 6 λ

• Lagrangian LASSO min ‖Ax− y‖2
2 + λ‖x‖1

There are also convex relaxations for other constraints. For example min rank(X) such
that A(X) = Y is hard, a simpler problem is to solve the nuclear norm minimization
instead: min ‖X‖∗ such that A(X) = Y. This can be applied to low-rank estimation for
images or matrix completion.

6



References

[Bou14] Jean Bourgain. An Improved Estimate in the Restricted Isometry Problem, pages
65–70. Springer International Publishing, 2014.

[CT06] Emmanuel J. Candès and Terence Tao. Near-optimal signal recovery from
random projections: Universal encoding strategies? IEEE Trans. Information
Theory, 52(12):5406–5425, 2006.

[FR13] Simon Foucart and Holger Rauhut. A mathematical introduction to compressive
sensing. Springer, 2013.

[HR15] Ishay Haviv and Oded Regev. The restricted isometry property of subsampled
fourier matrices. CoRR, abs/1507.01768, 2015.

[RV07] Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier
and gaussian measurements. Communications on Pure and Applied Mathematics,
61(8):1025–1045, 2007.

7


	Non-convex constraints I
	Hardness
	Convex relaxation


