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18 Escaping saddle points

This lecture formalizes and shows the following intuitive statement for nonconvex
optimization:

Gradient descent almost never converges to (strict) saddle points.

The result was shown in [LSJR16]. Let’s start with some definitions.

Definition 18.1 (Stationary point). We call x∗ a stationary point if the gradient vanishes
at x∗, i.e., ∇ f (x∗) = 0.

We can further classify stationary points into different categories. One important
category are saddle points.

Definition 18.2 (Saddle point). A stationary point x∗ is a saddle point if for all ε > 0,
there are points x, y ∈ B(x∗; ε) s.t. f (x) 6 f (x∗) 6 f (y).

Definition 18.3 (Strict saddle point). For a twice continuously differentiable function
f ∈ C2, a saddle point x∗ is a strict saddle point if the Hessian at that point is not positive
semidefinite, i.e. λmin(∇2 f (x∗)) < 0, where λmin denotes the smallest eigenvalue.
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18.1 Dynamical systems perspective

It’ll be helpful to think of the trajectory defined by gradient descent as a dynamical
system. To do so, we view each gradient descent update as a operator. For a fixed step
size η, let

g(x) = x− η∇ f (x)

so the notation for the result of iteration t from our previous discussion of gradient
descent carries over as xt = gt(x0) = g(g(...g(x0))), where g is applied t times on
the initial point x0. We call g the gradient map. Note that x∗ is stationary iff. it is a
fixed point of the gradient map i.e. g(x∗) = x∗. Also note that Dg(x) = I − η∇2 f (x)
(Jacobian of g) , a fact that will become important later. Now we formalize a notion of
the set of "attractors“ of x∗.

Definition 18.4. The global stable set of x∗, is defined as

WS(x∗) = {x ∈ Rn : lim
t

gt(x) = x∗}

In words, this is the set of points that will eventually converge to x∗.

With this definition out of the way, we can state the main claim formally as follows.

Theorem 18.5. Assume f ∈ C2 and is β-smooth. Also assume that the step size η < 1/β.
Then for all strict saddle points x∗, its set of attractors WS(x∗) has Lebesgue measure 0.

Remark 18.6. In fact, it could be proven with additional technicalities that the Lebesgue measure
of
⋃

strict saddle points x∗ WS(x∗) is also 0. This is just another way to say that gradient descent
almost surely converges to local minima.

Remark 18.7. By definition, this also holds true to any probability measure absolutely con-
tinuous w.r.t. the Lebesgue measure (e.g. any continuous probability distribution). That
is,

P(lim
t

xt = x∗) = 0

However, the theorem above is only an asymptotic statement. Non-asymptotically,
even with fairly natural random initialization schemes and non-pathological functions,
gradient descent can be significantly slowed down by saddle points. The most recent
result [DJL+17] is that gradient descent takes exponential time to escape saddle points
(even though the theorem above says that they do escape eventually). We won’t prove
this result in this lecture.

18.2 The case of quadratics

Before the proof, let’s go over two examples that will make the proof more intuitive:
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Example 18.8. f (x) = 1
2 xT Hx where H is an n-by-n matrix, symmetric but not positive

semidefinite. For convenience, assume 0 is not an eigenvalue of H. So 0 is the only
stationary point and the only strict saddle point for this problem.

We can calculate g(x) = x − ηHx = (I − ηH)x and gt(x) = (I − ηH)tx. And we
know that λi(I − ηH) = 1− ηλi(H), where λi for i = 1...n could denote any one of the
eigenvalues. So in order for limt gt(x) = limt(1− ηλi(H))tx to converge to 0, we just
need limt(1− ηλi(H))t to converge to 0, that is, |1− ηλi(H)| < 1. This implies that

WS(0) = span
{

u|Hu = λu, 0 < λ <
η

2

}
i.e. the set of eigenvectors for the positive eigenvalues smaller than η

2 . Since η can
be arbitrarily large, we just consider the larger set of eigenvectors for the positive
eigenvalues. By our assumption on H, this set has dimension lower than n, thus has
measure 0.

Example 18.9. Consider the function f (x, y) = 1
2 x2 + 1

4 y4 − 1
2 y2 with corresponding

gradient update

g(x, y) =
[

(1− η)x
(1 + η)y− ηy3

]
,

and Hessian

∇2 f (x, y) =
[

1 0
0 3y2 − 1

]
.

We can see that (0,−1) and (0, 1) are the local minima, and (0, 0) is the only strict saddle
point. Similar to in the previous example, WS(0) is a low-dimensional subspace.

18.3 The general case

We conclude this lecture with a proof of the main theorem.

Proof of Theorem 18.5. First define the local stable set of x∗ as

WS
ε (x∗) = {x ∈ B(x∗; ε) : gt(x) ∈ B(x∗; ε) ∀t}

Intuitively, this describes the subset of B(x∗; ε) that stays in B(x∗; ε) under arbitrarily
many gradient maps. This establishes a notion of locality that matters for gradient
descent convergence, instead of B(x∗; ε) which has positive measure.

Now we state a simplified version of the stable manifold theorem without proof: For
a diffeomorphism g : Rn → Rn, if x∗ is a fixed point of g, then for all ε small enough,
WS

ε (x∗) is a submanifold of dimension equal to the number of eigenvalues of the Dg(x∗)
that are 6 1. A diffeomorphism, roughly speaking, is a differentiable isomorphism. In
fact, since differentiability is assumed for g, we will focus on the isomorphism.
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Let x∗ be a strict saddle point. Once we have proven the fact that g is a diffeomor-
phism (using the assumption that η < 1/β), we can apply the stable manifold theorem
since x∗ is a fixed point of g. Because ∇ f (x∗) must have an eigenvalue < 0, Dg must
have an eigenvalue > 1, so the dimension of WS

ε (x∗) is less than n and WS
ε (x∗) has

measure 0.
If gt(x) converges x∗, there must ∃T large enough s.t. gT(x) ∈WS

ε (x∗). So WS(x∗) ⊆⋃
t>0 g−t(WS

ε (x∗)). For each t, gt is in particular an isomorphism (as a composition of
isomorphisms), and so it g−t. Therefore g−t(WS

ε (x∗)) has the same cardinality as WS
ε (x∗)

and has measure 0. Because the union is over a countable set, the union also has measure
0, thus its subset WS(x∗) ends up with measure 0 and we have the desired result.

Finally we show that g is bijective to establish the isomorphism (since it is assumed
to be smooth). It is injective because, assuming g(x) = g(y), by smoothness,

‖x− y‖ = ‖g(x) + η∇ f (x)− g(y)− η∇ f (x)‖ = η‖∇ f (x)−∇ f (y)‖ 6 ηβ‖x− y‖

Because ηβ < 1, we must have ‖x− y‖ = 0. To prove that g is surjective, we construct
an inverse function

h(y) = argmin
x

1
2
‖x− y‖2 − η f (x)

a.k.a. the proximal update. For η < 1/β, h is strongly convex, and by the KKT condition,
y = h(y)−∇ f (h(y)) = g(h(y)). This completes the proof. �
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