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17 Non-convex problems

This lecture provides the important information on how non-convex problems differ
from convex problems. The major issue in non-convex problems is that it can be difficult
to find the global minimum because algorithms can easily get stuck in the possibly
numerous local minima and saddle points.
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17.1 Local minima

We start with a discussion of local minima together with necessary and sufficient
conditions for local minimality.

Definition 17.1 (Local minimum). A point x∗ is an unconstrained local minimum if there
exist ε > 0 such that f (x∗) 6 f (x) for all x with ‖x− x∗‖ < ε.

Definition 17.2 (Global minimum). A point x∗ is an unconstrained global minimum if
f (x∗) 6 f (x) for all x.

For both definitions, we say “strict” if these inequalities are strict.

Proposition 17.3 (Necessary Conditions for local minimum). Let x∗ be an unconstrained
local minimum of f : Rn → R and assume f is continuously differentiable (C1) in an open set
containing x∗. Then

1. ∇ f (x∗) = 0 (First-Order Necessary Condition)

2. If in addition f is twice continuously differentiable in an open set around x∗, then
∇2 f (x∗) � 0. (Second Order Necessary Condition)

Proof. Fix any direction d ∈ Rn.

1. g(α) := f (x∗ + αd). Then

0 6 lim
α→0

f (x∗ + αd)− f (x∗)
α

(1)

=
∂g(0)

∂α

= d>∇ f (x∗)

Inequality 1 follows because x∗ is a local minimum, 0 6 f (x∗ + αd)− f (x∗) for
sufficiently small alpha. So, we can construct a sequence with only positive α

that converges to x∗ such that each element 0 6 f (x∗+αnd)− f (x∗)
αn

which implies that
statement given that f is locally differentiable.

Since d is arbitrary, this implies that ∇ f (x∗) = 0.

2. First we represent f (x∗ + αd)− f (x∗) using the 2nd order Taylor expansion.

f (x∗ + αd)− f (x∗) = α∇ f (x∗)>d +
α2

2
d>∇2 f (x∗)d + O(α2)

=
α2

2
d>∇2 f (x∗)d + O(α2)
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Now we do the following

0 6 lim
α→0

f (x∗ + αd)− f (x∗)
α2

= lim
α→0

1
2

d>∇2 f (x∗)d +
O(α2)

α2

=
1
2

d>∇2 f (x∗)d

Because d is arbitrary, this implies that ∇2 f (x∗) � 0 (Positive semidefinite).

�

Note that ∇ f (x∗) = 0 alone does not imply x∗ is a local minimum. Even the nec-
essary conditions ∇ f (x∗) = 0 and ∇2 f (x∗) � 0 does not imply x∗ is a local minimum.
This is because it could be that ∇2 f (x∗) = 0, but the 3rd order is not 0. For example in
the 1d case, x∗ = 0 for f (x) = x3 satisfies these conditions, but is not a local minimum.
Now, we will look at the actual sufficient conditions for a local minimum, but these
conditions can only detect strict local minima.

Proposition 17.4 (Sufficient conditions for strict local minimum). Let f : Rn → R be
twice continuously differentiable (C2) over an open set S. Suppose x ∈ S such that∇ f (x∗) = 0
and ∇2 f (x) � 0 (positive definite). Then, x∗ is a strict unconstrained local minimum.

Proof. Fix d ∈ Rn. Note that d>∇2 f (x∗)d > λmin‖d‖2, where λmin is the smallest
eigenvalue of ∇2 f (x∗).

f (x∗ + d)− f (x∗) = ∇ f (x∗)>d +
1
2

d>∇2 f (x∗)d + O(‖d‖2) (2)

>
λmin

2
‖d‖2 + O(‖d‖2)

=

(
λmin

2
+

O(‖d‖2)

‖d‖2

)
‖d‖2

> 0 (3)

Equality 2 follows from using the 2nd Order Taylor expansion. Inequality 3 follows for
sufficiently small ‖d‖. Therefore, x∗ must be a strict local minimum. �

17.2 Stationary points

For non-convex problems we must accept that gradient descent cannot always find
a global minimum, and not necessarily even a local minimum. We can, however,
guarantee convergence to a stationary point.

Definition 17.5 (Stationary point). We say a point x ∈ Rn is a stationary point of
f : Rn → R if ∇ f (x) = 0.
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Proposition 17.6. With appropriately chosen step sizes, gradient descent converges to a sta-
tionary point.

Proof idea. Suppose x′ = x− η∇ f (x) and ∇ f (x) 6= 0, since otherwise we’re already at
a stationary point.

From a first-order Taylor exapansion, we get

f (x′) = f (x) +∇ f (x)>(x′ − x) + o(‖x′ − x‖)
= f (x)− η‖∇ f (x)‖2 + o(η‖∇ f (x)‖)
= f (x)− η‖∇ f (x)‖2 + o(η) (4)

Equality 4 is justified because we control η, and ‖∇ f (x)‖ is a constant with respect to η.
Therefore, a sufficiently small step size η > 0 will guarantee that f (x) < f (x). �

Next we worry about selecting step sizes in a clever way.

17.2.1 Minimization Rule / Line Search

Given a descent direction d (example d = −∇ f (x)), let our step rate η be as follows

η ∈ argmin
η>0

f (x + ηd)

Using this procedure is called Line Search because we search for the best step size
along the direction d. However, exact line search can be expensive due to the argmin.

Instead, we can approximate this minimization by using the so-called Armijo Rule.
Fix

γ, s, σ < 1

Put η = γms where m is the smallest non-negative integer such that

f (x)− f (x + γmsd) > −σγms∇ f (x)>d

Think of s as an initial learning rate. If s causes sufficient decrease then stop, otherwise
keep multiplying by γ until it does. Typical choices for parameters are

γ =
1
2

, σ =
1

100
, s = 1 .

Notice that as long as d satisfies −∇ f (x)Td > 0 that the inequality ensures that our
function sequence will decrease.

Proposition 17.7. Assume that f if continuous and differentiable (C1), and let {xt} be a
sequence generated by xt+1 = xt − ηt∇ f (xt) where ηt is selected by the Armijo rule. Then,
every limit point of {xt} is a stationary point.
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Proof. Let x̄ be a limit point. By continuity { f (xt)} converges to f (x̄) and therefore:

f (xt)− f (xt+1)→ 0

By definition of Armijo rule:

f (xt)− f (xt+1) > −σηt‖∇ f (xt)‖2 (5)

Suppose for the sake of contradiction that x̄ is not a stationary point of f . Then,

lim sup
t→∞

−‖∇ f (xt)‖2 < 0

By inequality 5, this must mean that ηt → 0. This implies ∃t0 such that ∀t > t0

f (xt)− f (xt −
ηt

γ
∇ f (xt)) <

σηt

γ
‖∇ f (xt)‖2

Because ηt → 0, we know that after some t0 all step sizes are chosen with a m > 1.
Therefore, going back one iteration of Armijo rule was not good enough to satisfy the
inequality or else some previous step size would have been chosen.

Now let η̃t =
ηt
γ and we can continue as follows

f (xt)− f (xt − η̃t∇ f (xt))

η̃t
< σ‖∇ f (x)‖2 ⇒

∇ f (xt − η̃t∇ f (xt))
T∇ f (xt) < σ‖∇ f (x)‖2 ⇒ (6)

‖∇ f (xt)‖2 6 σ‖∇ f (xt)‖2 (7)

Inequality 6 follows from using Mean Value Theorem (MVT) Inequality 7 follows by
taking the limit as ηt → 0⇒ η̃t → 0

This is a contradiction because 0 < σ < 1. Therefore, the limit point x̄ is a stationary
point of f . �

Therefore, if we can use the Armijo rule to determine step sizes that guarantee that
gradient descent will converge to a stationary point.

17.3 Saddle points

Knowing that gradient descent will converge to a stationary point, how concerned
should we be that the stationary point is not a local minimum?

Definition 17.8 (Saddle points). Saddle points are stationary points that are not local
optima.

This means that if f is twice differentiable then ∇2 f (x) has both positive and nega-
tive eigenvalues.
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17.3.1 How do saddle points arise?

In most non-convex problems there exists several local minima. This is clear to see in
problems that have natural symmetry such as in a two layer fully connected neural
networks.

Notice that any permutation of the units of the hidden layer would preserve the same
function, so we have at least h! local minima. Typically a convex combination of two
distinct local minima in a non-convex problem is not a local minimum. In the case
where ∇ f (x) is differentiable, then by Mean Value Theorem we know that there must
exist another stationary point between any two local minima. So, there often exists
at least one saddle point between any two distinct local minima. Hence, many local
minima tends to lead to many saddle points.

However, recent work has demonstrated that saddle points are usually not a prob-
lem.

1. Gradient descent does not converge to strict saddle points from a random initial-
ization. [GHJY15]

2. Saddle points can be avoided with noise addition. [LPP+17]
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