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15 Fenchel duality and algorithms

In this section, we introduce the Fenchel conjugate. First, recall that for a real-valued
convex function of a single variable f (x), we call f ∗(p) := supx px− f (x) its Legendre
transform. This is illustrated in figure 1.

The generalization of the Legendre transform to (possibly nonconvex) functions of
multiple variables is the Fenchel conjugate.

Definition 15.1 (Fenchel conjugate). The Fenchel conjugate of f : Rn → R is

f ∗(p) = sup
x
〈p, x〉 − f (x)

We now present several useful facts about the Fenchel conjugate. The proofs are left
as an exercise.

Fact 15.2. f ∗ is convex.

Indeed, f ∗ is the supremum of affine functions and therefore convex. Thus, the
Fenchel conjugate of f is also known as its convex conjugate.

Fact 15.3. f ∗( f ∗(x)) = f if f is convex.

In other words, the Fenchel conjugate is its own inverse for convex functions. Now,
we can also relate the subdifferential of a function to that of its Fenchel conjugate.
Intuitively, observe that 0 ∈ ∂ f ∗(p) ⇐⇒ 0 ∈ p − ∂ f (x) ⇐⇒ p ∈ ∂ f (x). This is
summarized more generally in the following fact.
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Figure 1: Legendre Transform. The function f ∗(p) is how much we need to vertically shift the
epigraph of f so that the linear function px is tangent to f at x.

Fact 15.4. The subdifferential of f ∗ at p is ∂ f ∗(p) = {x : p ∈ ∂ f (x)}.

Indeed, ∂ f ∗(0) is the set of minimizers of f .
In the following theorem, we introduce Fenchel duality.

Theorem 15.5 (Fenchel duality). Suppose we have f proper convex, and g proper concave.
Then

min
x

f (x)− g(x) = max
p

g∗(p)− f ∗(p)

where g∗ is the concave conjugate of g, defined as infx〈p, x〉 − g(x).

In the one-dimensional case, we can illustrate Fenchel duality with Figure 2.
In the minimization problem, we want to find x such that the vertical distance

between f and g at x is as small as possible. In the (dual) maximization problem, we
draw tangents to the graphs of f and g such that the tangent lines have the same slope
p, and we want to find p such that the vertical distance between the tangent lines is as
large as possible. The duality theorem above states that strong duality holds, that is, the
two problems have the same solution.

We can recover Fenchel duality from Lagrangian duality, which we have already
studied. To do so, we need to introduce a constraint to our minimization problem in
Theorem 15.5. A natural reformulation of the problem with a constraint is as follows.

min
x,z

f (x)− g(z) subject to x = z (1)
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Figure 2: Fenchel duality in one dimension

15.1 Deriving the dual problem for empirical risk minimization

In empirical risk minimization, we often want to minimize a function of the following
form:

P(w) =
m

∑
i=1

φi(〈w, xi〉) + R(w) (2)

We can think of w ∈ Rn as the model parameter that we want to optimize over
(in this case it corresponds to picking a hyperplane), and xi as the features of the i-th
example in the training set. φi(·, xi) is the loss function for the i-th training example and
may depend on its label. R(w) is the regularizer, and we typically choose it to be of the
form R(w) = λ

2 ‖w‖2.
The primal problem, minw∈Rn P(w), can be equivalently written as follows:

min
w,z

m

∑
i=1

φi(zi) + R(w) subject to X>w = z (3)
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By Lagrangian duality, we know that the dual problem is the following:

max
α∈Rm

min
z,w

m

∑
i=1

φi(zi) + R(w)− α>(X>w− z)

=max
α

min
w,z

m

∑
i=1

φi(zi) + αizi + R(w)− α>X>w

=max
α

(
−min

w,z
−
(

m

∑
i=1

φi(zi) + αizi

)
+ (Xα)>w− R(w)

)

=max
α
−
(

m

∑
i=1

max
zi

(−φi(zi)− αizi) + max
w

(Xα)>w− R(w)

)

=max
α
−

n

∑
i=1

φ∗i (−αi)− R∗(Xα)

where φ∗i and R∗ are the Fenchel conjugates of φi and R∗ respectively. Let us denote the
dual objective as D(α) = ∑m

i=1 φ∗i (−αi)− R∗(Xα). By weak duality, D(α) 6 P(w).
For R(w) = λ

2 ‖w‖2, R∗(p) = λ
2 ‖

1
λ p‖2. So R is its own convex conjugate (up to

correction by a constant factor). In this case the dual becomes:

max
α

m

∑
i=1

φ∗i (−αi)−
λ

2
‖ 1

λ

m

∑
i=1

αixi‖2

We can relate the primal and dual variables by the map w(α) = 1
λ ∑m

i=1 αixi. In
particular, this shows that the optimal hyperplane is in the span of the data. Here are
some examples of models we can use under this framework.

Example 15.6 (Linear SVM). We would use the hinge loss for φi. This corresponds to

φi(w) = max(0, 1− yix>i w) , −φ∗i (−αi) = αiyi

Example 15.7 (Least-squares linear regression). We would use the squared loss for φi.
This corresponds to

φi(w) = (w>xi − yi)
2 , −φ∗i (−αi) = αiyi + α2/4

We end with a fact that relates the smoothness of φi to the strong convexity of φ∗i .

Fact 15.8. If φi is 1
γ -smooth, then φ∗i is γ-strongly convex.

15.2 Stochastic dual coordinate ascent (SDCA)

In this section we discuss a particular algorithm for empirical risk minimization which
makes use of Fenchel duality. Its main idea is picking an index i ∈ [m] at random, and
then solving the dual problem at coordinate i, while keeping the other coordinates fixed.

More precisely, the algorithm performs the following steps:
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1. Start from w0 := w(α0)

2. For t = 1, . . . , T:

(a) Randomly pick i ∈ [m]

(b) Find ∆αi which maximizes

−Φi

(
−(αt−1

i + ∆αi)
)
− λ

2m

∥∥∥∥wt−1 +
1
λ

∆αixi

∥∥∥∥2

3. Update the dual and primal solution

(a) αt = αt−1 + ∆αi

(b) wt = wt−1 + 1
λ ∆αixi

For certain loss functions, the maximizer ∆αi is given in closed form. For example, for
hinge loss it is given explicitly by:

∆αi = yi max

(
0, min(1,

1− xT
i wt−1yi

‖xi‖2/λm
+ αt−1

i yi)

)
− αt−1

i ,

and for squared loss it is given by:

∆αi =
yi − xT

i wt−1 − 0.5αt−1
i

0.5 + ‖x‖2/λm
.

Note that these updates require both the primal and dual solutions to perform the
update.

Now we state a lemma given in [SSZ13], which implies linear convergence of SDCA.
In what follows, assume that ‖xi‖ 6 1, Φi(x) > 0 for all x, and Φi(0) 6 1.

Lemma 15.9. Assume Φ∗i is γ-strongly convex, where γ > 0. Then:

E[D(αt)− D(αt−1)] >
s
m

E[P(wt−1)− D(αt−1)],

where s = λmγ
1+λmγ .

We leave out the proof of this result, however give a short argument that proves
linear convergence of SDCA using this lemma. Denote εt

D := D(α∗)− D(αt). Because
the dual solution provides a lower bound on the primal solution, it follows that:

εt
D 6 P(wt)− D(αt).

Further, we can write:
D(αt)− D(αt−1) = εt−1

D − εt
D.

5



By taking expectations on both sides of this equality and applying Lemma 15.9, we
obtain:

E[εt−1
D − εt

D] = E[D(αt)− D(αt−1)]

>
s
m

E[P(wt−1)− D(αt−1)]

>
s
m

E[εt−1
D ].

Rearranging terms and recursively applying the previous argument yields:

E[εt
D] 6 (1− s

m
)E[εt−1

D ] 6 (1− s
m
)tε0

D.

From this inequality we can conclude that we need O(m + 1
λγ log(1/ε)) steps to achieve

ε dual error.
Using Lemma 15.9, we can also bound the primal error. Again using the fact that

the dual solution underestimates the primal solution, we provide the bound in the
following way:

E[P(wt)− P(w∗)] 6 E[P(wt)− D(αt)]

6
m
s

E[D(αt+1)− D(αt)]

6
m
s

E[εt
D],

where the last inequality ignores the negative term −E[εt−1
D ].
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