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13 Duality theory
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13.1 Optimality conditions for equality constrained optimization

Recall that x? minimizes a smooth, convex function f over a closed convex set Ω if and
only if

〈∇ f (x?), x− x?〉 > 0 ∀x ∈ Ω . (1)

Let’s specialize this to the special case where Ω is an affine set. Let A be an n× d
matrix with rank n such that Ω = {x : Ax = b} for some b ∈ Rn. Note that we can
always assume that rank(A) = n or else we would have redundant constraints. We
could also parameterize Ω as Ω = {x0 + v : Av = 0} for any x0 ∈ Ω. Then using (1),
we have

〈∇ f (x?), x− x?〉 > 0 ∀x ∈ Ω if and only if 〈∇ f (x?), u〉 > 0 ∀u ∈ ker(A) .

But since ker A is a subspace, this can hold if and only if 〈∇ f (x?), u〉 = 0 for all
u ∈ ker(A). In particular, this means, ∇ f (x?) must lie in ker(A)⊥. Since we have that
Rd = ker(A)⊕ Im(AT), this means that ∇ f (x?) = ATλ for some λ ∈ Rn.
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To summarize, this means that x? is optimal for f over Ω if and only if there
∃λ? ∈ Rm such that {

∇ f (x?) + ATλ? = 0
Ax? = b

These optimality conditions are known as the Karush-Kuhn-Tucker Conditions or KKT
Conditions.

As an example, consider the equality constrained quadratic optimization problem

minimize 1
2 xTQx + cTx

subject to Ax = b

The KKT conditions can be expressed in matrix form[
Q AT

A 0

] [
x
λ

]
=

[
c
b

]
.

13.2 Nonlinear constraints

Let Ω be a closed convex set. Let’s define the tangent cone of Ω at x as

TΩ(x) = cone{z− x : z ∈ Ω}

The tangent cone is the set of all directions that can move from x and remain in Ω. We
can also define the normal cone of Ω at x to be the set

NΩ(x) = TΩ(x)◦ = {u : 〈u, v〉 6 0, ∀v ∈ TΩ(x)}

Suppose we want to minimize a continuously differentiable function f over the
intersection of a closed convex set Ω and an affine set A = {x : Ax = b}

minimize f (x)
subject to x ∈ Ω

Ax = b
(2)

where A is again a full rank n× d matrix. In this section, we will generalize (1) to show

Proposition 13.1. x? is optimal for (2) if and only if there exists λ? ∈ Rn such that{
−∇[ f (x?) + A>λ?] ∈ NΩ(x?)
x? ∈ Ω ∩A

.

The key to our analysis here will be to rely on convex analytic arguments. Note that
when there is no equality constraint Ax = b, our constrained optimality condition is
completely equivalent to the assertion

−∇ f (x?) ∈ NΩ(x?) . (3)
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Figure 1: Black set is C, red set is TC(x), blue set is Nc(x)

Thus, to prove Proposition 13.1, it will suffice for us to understand the normal cone
of the set Ω ∩A at the point x?. To obtain a reasonable characterization, we begin by
proving a general fact.

Proposition 13.2. Let Ω ⊆ Rd be a closed convex set. Let A denote the affine set {x : Ax =
b} for some A ∈ Rn×d and b ∈ Rn. Suppose that the set ri(Ω) ∩A is non-empty. Then for
any x ∈ Ω ∩A,

NΩ∩A(x) = NΩ(x) + {ATλ : λ ∈ Rn} .

Proof. The “⊇” assertion is straightforward. To see this, suppose z ∈ Ω ∩A and note
that z − x ∈ null(A) so that (z − x)>A>λ = λ>A(z − x) = 0 for all λ ∈ Rn. If
u ∈ NΩ(x), then (z− x)>u 6 0, so for λ ∈ Rn, we have

〈z− x, u + A>λ〉 = 〈z− x, u〉 6 0

implying that u + A>λ ∈ NΩ∩A(x). For the reverse inclusion, let v ∈ NΩ∩A(x). Then
we have

v>(z− x) 6 0 for all z ∈ Ω ∩A
Now define the sets

C1 =
{
(y, µ) ∈ Rd+1 : y = z− x, z ∈ Ω, µ 6 v>y

}
C2 =

{
(y, µ) ∈ Rd+1 : y ∈ ker(A), µ = 0

}
.

Note that ri(C1) ∩ C2 = ∅ because otherwise there would exist a (ŷ, µ̂) such that

v>ŷ > µ̂ = 0
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and ŷ ∈ TΩ∩A(x). This would contradict our assumption that v ∈ NΩ∩A(x). Since their
intersection is empty, we can properly separate ri(C1) from C2. Indeed, since C2 is a
subspace and C1 has nonempty relative interior, there must be a (w, γ) such that

inf
(y,µ)∈C1

{w>y + γµ} < sup
(y,µ)∈C1

{w>y + γµ} 6 0

while
w>u = 0 for all u ∈ ker(A).

In particular, this means that w = ATλ for some λ ∈ Rn. Now, γ must be nonnegative,
as otherwise,

sup
(y,µ)∈C1

{w>y + γµ} = ∞

(which can be seen by letting µ tend to negative infinity). If γ = 0, then

sup
y∈C1

w>y 6 0

but the set {y : wTy = 0} does not contain the set {z− x : z ∈ Ω} as the infimum is
strictly negative. This means that the relative interior of Ω− {x} cannot intersect the
kernel of A which contradicts our assumptions. Thus, we can conclude that γ is strictly
positive. By homogeneity, we may as well assume that γ = 1.

To complete the argument, note that we now have

(w + v)>(z− x) 6 0 for all z ∈ Ω.

This means that v + w ∈ NΩ(x) and we have already shown that w = ATλ. Thus,

v = (v + w)− w ∈ NΩ(x) +NA(x) .

�

Let’s now translate the consequence of this proposition for our problem. Using (3)
and Proposition 13.2, we have that x? is optimal for

min f (x) s.t x ∈ Ω, Ax = b

if and only if Ax? = b and there exists a λ ∈ Rn such that

−∇[ f (x∗) + A>λ] ∈ NΩ(x?) ∀x ∈ Ω .

This reduction is not immediately useful to us, as it doesn’t provide an algorithmic
approach to solving the constrained optimization problem. However, it will form the
basis of our dive into duality.
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13.3 Duality

Duality lets us associate to any constrained optimization problem, a concave maximiza-
tion problem whose solutions lower bound the optimal value of the original problem.
In particular, under mild assumptions, we will show that one can solve the primal
problem by first solving the dual problem.

We’ll continue to focus on the standard primal problem for an equality constrained
optimization problem:

minimize f (x)
subject to x ∈ Ω

Ax = b
(4)

Here, assume that Ω is a closed convex set, f is differentiable, and A is full rank.
The key behind duality (here, Lagrangian duality) is that problem (4) is equivalent

to
min
x∈Ω

max
λ∈Rn

f (x) + λT(Ax− b)

To see this, just note that if Ax 6= b, then the max with respect to λ is infinite. On the
other hand, if Ax = b is feasible, then the max with respect to λ is equal to f (x).

The dual problem associated with (4) is

max
λ∈Rn

min
x∈Ω

f (x) + λT(Ax− b)

Note that the function

q(λ) := min
x∈Ω

f (x) + λT(Ax− b)

is always a concave function as it is a minimum of linear functions. Hence the dual
problem is a concave maximization problem, regardless of what form f and Ω take. We
now show that it always lower bounds the primal problem.

13.4 Weak duality

Proposition 13.3. For any function ϕ(x, z),

min
x

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z) .

Proof. The proof is essentially tautological. Note that we always have

ϕ(x, z) > min
x

ϕ(x, z)

Taking the maximization with respect to the second argument verifies that

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z) ∀x .

Now, minimizing the left hand side with respect to x proves

min
x

max
z

ϕ(x, z) > max
z

min
x

ϕ(x, z)

which is precisely our assertion. �
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13.5 Strong duality

For convex optimization problems, we can prove a considerably stronger result. Namely,
that the primal and dual problems attain the same optimal value. And, moreover, that
if we know a dual optimal solution, we can extract a primal optimal solution from a
simpler optimization problem.

Theorem 13.4 (Strong Duality).

1. If ∃z ∈ relint(Ω) that also satisfies our equality constraint, and the primal problem has
an optimal solution, then the dual has an optimal solution and the primal and dual values
are equal

2. In order for x? to be optimal for the primal and λ? optimal for the dual, it is necessary and
sufficient that Ax? = b , x? ∈ Ω and

x? ∈ arg min
x∈Ω

L(x, λ?) = f (x) + λ?
T(Ax− b)

Proof. For all λ and all feasible x

q(λ) 6 f (x) + λ(Ax− b) = f (x)

where the second equality holds because Ax = b.
Now by Proposition 13.1, x? is optimal if and only if there exists a λ? such that

〈∇ f (x?) + ATλ?, x− x?〉 > 0 ∀x ∈ Ω

and Ax? = b. Note that this condition means that x? minimizes L(x, λ?) over Ω.
By preceding argument, it now follows that

q(λ?) = inf
x∈Ω
L(x, λ?)

= L(x?, λ?)

= f (x?) + λ?
T(Ax? − b) = f (x?)

which completes the proof. �
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