Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Instructor: Moritz Hardt

Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz

Email: msimchow+ee227c@berkeley.edu

March 6, 2018

12 Lecture 12: Coordinate Descent

12.1 Why Coordinate Descent?

There are many classes of functions for which it is very cheap to compute directional derivatives along the standard basis vectors e_i , $i \in [n]$. For example,

$$f(x) = ||x||^2 \text{ or } f(x) = ||x||_1$$
 (1)

This is especially true of common regularizers, which often take the form

$$R(x) = \sum_{i=1}^{n} R_i(x_i) .$$
(2)

More generally, many objectives and regularizes exhibit "group sparsity"; that is,

$$R(x) = \sum_{j=1}^{m} R_j(x_{S_j})$$
(3)

where each S_j , $j \in [m]$ is a subsect of [n], and similarly for f(x). Examples of functions with block decompositions and group sparsity include:

1. Group sparsity penalties;

Figure 1: Example of the bipartite graph between component functions $f_i, i \in [m]$ and variables $x_j, j \in [n]$ induced by the group sparsity structure of a function $f : \mathbb{R}^n \to \mathbb{R}^m$. An edge between f_i and x_j conveys that the *i*th component function depends on the *j*th coordinate of the input.

- 2. Regularizes of the form $R(U^{\top}x)$, where R is coordinate-separable, and U has sparse columns and so $(U^{\top}x) = u_i^{\top}x$ depends only on the nonzero entries of U_i ;
- Neural networks, where the gradients with respect to some weights can be computed "locally"; and
- 4. ERM problems of the form

$$f(x) := \sum_{i=1}^{n} \phi_i(\langle w^{(i)}, x \rangle) \tag{4}$$

where $\phi_i : \mathbb{R} \to \mathbb{R}$, and $w^{(i)}$ is zero except in a few coordinates.

12.2 Coordinate Descent

Denote $\partial_i f = \frac{\partial f}{x_i}$. For each round t = 1, 2, ..., the coordinate descent algorithm chooses an index $i_t \in [n]$, and computes

$$x_{t+1} = x_t - \eta_t \partial_{i_t} f(x_t) \cdot e_{i_t} \,. \tag{5}$$

This algorithm is a special case of stochastic gradient descent. For

$$\mathbb{E}[x_{t+1}|x_t] = x_t - \eta_t \mathbb{E}[\partial_{i_t} f(x_t) \cdot e_{i_t}]$$
(6)

$$= x_t - \frac{\eta_t}{n} \sum_{i=1}^n \partial_i f(x_t) \cdot e_i$$
(7)

$$= x_t - \eta_t \nabla f(x_t) . \tag{8}$$

Recall the bound for SGD: If $\mathbb{E}[g_t] = \nabla f(x_t)$, then SGD with step size $\eta = \frac{1}{BR}$ satisfies

$$\mathbb{E}[f(\frac{1}{T}\sum_{t=1}^{T}x_t)] - \min_{x \in \Omega} f(x) \leqslant \frac{2BR}{\sqrt{T}}$$
(9)

where R^2 is given by $\max_{x \in \Omega} ||x - x_1||_2^2$ and $B = \max_t \mathbb{E}[||g_t||_2^2]$. In particular, if we set $g_t = n\partial_{x_{i_t}} f(x_t) \cdot e_{i_t}$, we compute that

$$\mathbb{E}[\|g_t\|_2^2] = \frac{1}{n} \sum_{i=1}^n \|n \cdot \partial_{x_i} f(x_t) \cdot e_i\|_2^2 = n \|\nabla f(x_t)\|_2^2.$$
(10)

If we assume that *f* is *L*-Lipschitz, we additionally have that $\mathbb{E}[||g_t||^2] \leq nL^2$. This implies the first result:

Proposition 12.1. Let f be convex and L-Lipschitz on \mathbb{R}^n . Then coordinate descent with step size $\eta = \frac{1}{nR}$ has convergence rate

$$\mathbb{E}[f(\frac{1}{T}\sum_{t=1}^{T}x_t)] - \min_{x \in \Omega} f(x) \leq 2LR\sqrt{n/T}$$
(11)

12.3 Importance Sampling

In the above, we decided on using the uniform distribution to sample a coordinate. But suppose we have more fine-grained information. In particular, what if we knew that we could bound $\sup_{x \in \Omega} \|\nabla f(x)_i\|_2 \leq L_i$? An alternative might be to sample in a way to take L_i into account. This motivates the "importance sampled" estimator of $\nabla f(x)$, given by

$$g_t = \frac{1}{p_{i_t}} \cdot \partial_{i_t} f(x_t)$$
 where $i_t \sim \operatorname{Cat}(p_1, \dots, p_n)$. (12)

Note then that $\mathbb{E}[g_t] = \nabla f(x_t)$, but

$$\mathbb{E}[\|g_t\|_2^2] = \sum_{i=1}^n (\partial_{i_t} f(x_t))^2 / p_i^2$$
(13)

$$\leqslant \sum_{i=1}^{n} L_i^2 / p_i^2 \tag{14}$$

In this case, we can get rates

$$\mathbb{E}[f(\frac{1}{T}\sum_{t=1}^{T}x_{t})] - \min_{x \in \Omega} f(x) \leq 2R\sqrt{1/T} \cdot \sqrt{\sum_{i=1}^{n}L_{i}^{2}/p_{i}^{2}}$$
(15)

In many cases, if the values of L_i are heterogenous, we can optimize the values of p_i .

12.4 Importance Sampling For Smooth Coordinate Descent

In this section, we consider coordinate descent with a *biased* estimator of the gradient. Suppose that we have, for $x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$, the inequality

$$|\partial_{x_i} f(x) - \partial_{x_i} f(x + \alpha e_i)| \le \beta_i |\alpha| \tag{16}$$

where β_i are possibly heterogenous. Note that if that f is twice-continuously differentiable, the above condition is equivalent to $\nabla_{ii}^2 f(x) \leq \beta_i$, or $\text{Diag}(\nabla^2 f(x)) \leq \text{diag}(\boldsymbol{\beta})$. Define the distribution p^{γ} via

$$p_i^{\gamma} = \frac{\beta_i^{\gamma}}{\sum_{j=1}^n \beta_j^{\gamma}} \tag{17}$$

We consider gradient descent with the rule called $RCD(\gamma)$

$$x_{t+1} = x_t - \frac{1}{\beta_{i_t}} \cdot \partial_{i_t}(x_t) \cdot e_{i_t}, \text{ where } i_t \sim p^{\gamma}$$
(18)

Note that as $\gamma \to \infty$, coordinates with larger values of β_i will be selected more often. Also note that this is *not generally* equivalent to SGD, because

$$\mathbb{E}\left[\frac{1}{\beta_{i_t}}\partial_{i_t}(x_t)e_i\right] = \frac{1}{\sum_{j=1}^n \beta_j^{\gamma}} \cdot \sum_{i=1}^n \beta_i^{\gamma-1} \partial_i f(x_t)e_i = \frac{1}{\sum_{j=1}^n \beta_j^{\gamma}} \cdot \nabla f(x_t) \circ (\beta_i^{\gamma-1})_{i \in [n]}$$
(19)

which is only a scaled version of $\nabla f(x_t)$ when $\gamma = 1$. Still, we can prove the following theorem:

Theorem 12.2. Define the weighted norms

$$\|x\|_{[\gamma]}^{2} := \sum_{i=1}^{n} x_{i}^{2} \beta_{i}^{\gamma} \text{ and } \|x\|_{[\gamma]}^{*2} := \sum_{i=1}^{n} x_{i}^{2} \beta_{i}^{-\gamma}$$
(20)

and note that the norms are dual to one another. We then have that the rule $RCD(\gamma)$ produces iterates satisfying

$$\mathbb{E}[f(x_t) - \arg\min_{x \in \mathbb{R}^n} f(x)] \leqslant \frac{2R_{1-\gamma}^2 \cdot \sum_{i=1}^n \beta_i^{\gamma}}{t-1} , \qquad (21)$$

where $R_{1-\gamma}^2 = \sup_{x \in \mathbb{R}^n : f(x) \leq f(x_1)} \|x - x^*\|_{[1-\gamma]}.$

Proof. Recall the inequality that for a general β_g -smooth convex function g, one has that

$$g\left(u - \frac{1}{\beta_g} \nabla g(u)\right) - g(u) \leqslant -\frac{1}{2\beta_g} \|\nabla g\|^2$$
(22)

Hence, considering the functions $g_i(u; x) = f(x + ue_i)$, we see that $\partial_i f(x) = g'_i(u; x)$, and thus g_i is β_i smooth. Hence, we have

$$f\left(x - \frac{1}{\beta_i}\nabla f(x)e_i\right) - f(x) = g_i(0 - \frac{1}{\beta_g}g_i'(0;x)) - g(0;x) \leqslant -\frac{g_i'(u;x)^2}{2\beta_i} = -\frac{\partial_i f(x)^2}{2\beta_i}.$$
(23)

Hence, if *i* p^{γ} , we have

$$\mathbb{E}[f(x - \frac{1}{\beta_i}\partial_i f(x)e_i) - f(x)] \leq \sum_{i=1}^n p_i^{\gamma} \cdot -\frac{\partial_i f(x)^2}{2\beta_i}$$
(24)

$$= -\frac{1}{2\sum_{i=1}^{n}\beta_{i}^{\gamma}}\sum_{i=1}^{n}\beta^{\gamma-1}\partial_{i}f(x)^{2}$$
(25)

$$= -\frac{\|\nabla f(x)\|_{[1-\gamma]}^{*2}}{2\sum_{i=1}^{n}\beta_{i}^{\gamma}}$$
(26)

Hence, if we define $\delta_t = \mathbb{E}[f(x_t) - f(x^*)]$, we have that

$$\delta_{t+1} - \delta_t \leqslant -\frac{\|\nabla f(x_t)\|_{[1-\gamma]}^{*2}}{2\sum_{i=1}^n \beta_i^{\gamma}}$$

$$(27)$$

Moreover, with probability 1, one also has that $f(x_{t+1}) \leq f(x_t)$, by the above. We now continue with the regular proof of smooth gradient descent. Note that

$$\delta_t \leqslant \nabla f(x_t)^\top (x_t - x_*)$$

$$\leqslant \|\nabla f(x_t)\|_{[1-\gamma]}^* \|x_t - x_*\|_{[1-\gamma]}$$

$$\leqslant R_{1-\gamma} \|\nabla f(x_t)\|_{[1-\gamma]}^*.$$

Putting these things together implies that

$$\delta_{t+1} - \delta_t \leqslant -\frac{\delta_t^2}{2R_{1-\gamma}^2 \sum_{i=1}^n \beta_i^{\gamma}}$$
(28)

Recall that this was the recursion we used to prove convergence in the non-stochastic case.

Theorem 12.3. If f is in addition α -strongly convex w.r.t to $\|\cdot\|_{[1-\gamma]}$, then we get

$$\mathbb{E}[f(x_{t+1}) - \arg\min_{x \in \mathbb{R}^n} f(x)] \leqslant \left(1 - \frac{\alpha}{\sum_{i=1}^n \beta_i^\gamma}\right)^t (f(x_1) - f(x^*)) .$$
(29)

Proof. We need the following lemma:

Lemma 12.4. Let f be an α -strongly convex function w.r.t to a norm $\|\cdot\|$. Then, $f(x) - f(x^*) \leq \frac{1}{2\alpha} \|\nabla f(x)\|_*^2$.

Proof.

$$\begin{split} f(x) - f(y) &\leqslant \nabla f(x)^{\top} (x - y) - \frac{\alpha}{2} \|x - y\|_{2}^{2} \\ &\leqslant \|\nabla f(x)\|_{*} \|x - y\|^{2} - \frac{\alpha}{2} \|x - y\|_{2}^{2} \\ &\leqslant \max_{t} \|\nabla f(x)\|_{*} t - \frac{\alpha}{2} t^{2} \\ &= \frac{1}{2\alpha} \|\nabla f(x)\|_{*}^{2} \,. \end{split}$$

Lemma 12.4 shows that

$$\|\nabla f(x_s)\|_{[1-\gamma]}^{*2} \ge 2\alpha\delta_s.$$

On the other hand, Theorem 12.2 showed that

$$\delta_{t+1} - \delta_t \leqslant -\frac{\|\nabla f(x_t)\|_{[1-\gamma]}^{*2}}{2\sum_{i=1}^n \beta_i^{\gamma}}$$
(30)

Combining these two, we get

$$\delta_{t+1} - \delta_t \leqslant -\frac{\alpha \delta_t}{\sum_{i=1}^n \beta_i^{\gamma}}$$
(31)

$$\delta_{t+1} \leqslant \delta_t \left(1 - \frac{\alpha}{\sum_{i=1}^n \beta_i^{\gamma}} \right) \,. \tag{32}$$

Applying the above inequality recursively and recalling that $\delta_t = \mathbb{E}[f(x_t) - f(x^*)]$ gives the result.

12.5 Random Coordinate vs. Stochastic Gradient Descent

What's surprising is that $\text{RCD}(\gamma)$ is a descent method, despite being random. This is not true of normal SGD. But when does $\text{RCD}(\gamma)$ actually do better? If $\gamma = 1$, the savings are proportional to the ratio of $\sum_{i=1} \beta_i / \beta \cdot (T_{coord} / T_{grad})$. When *f* is twice differentiable, this is the ratio of

$$\frac{\operatorname{tr}(\max_{x} \nabla^{2} f(x))}{\|\max_{x} \nabla^{2} f(x)\|_{\operatorname{op}}} (T_{coord}/T_{grad})$$
(33)

12.6 Other Extensions to Coordinate Descent

- 1. Non-Stochastic, Cyclic SGD
- 2. Sampling with Replacement
- 3. Strongly Convex + Smooth!?
- 4. Strongly Convex (generalize SGD)
- 5. Acceleration? See [TVW⁺17]

References

[TVW⁺17] Stephen Tu, Shivaram Venkataraman, Ashia C Wilson, Alex Gittens, Michael I Jordan, and Benjamin Recht. Breaking locality accelerates block gauss-seidel. In *Proc.* 34*th ICML*, 2017.