
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

March 6, 2018

12 Lecture 12: Coordinate Descent

12.1 Why Coordinate Descent?

There are many classes of functions for which it is very cheap to compute directional
derivatives along the standard basis vectors ei, i ∈ [n]. For example,

f (x) = ‖x‖2 or f (x) = ‖x‖1 (1)

This is especially true of common regularizers, which often take the form

R(x) =
n

∑
i=1

Ri(xi) . (2)

More generally, many objectives and regularizes exhibit “group sparsity”; that is,

R(x) =
m

∑
j=1

Rj(xSj) (3)

where each Sj, j ∈ [m] is a subsect of [n], and similarly for f (x). Examples of functions
with block decompositions and group sparsity include:

1. Group sparsity penalties;
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Figure 1: Example of the bipartite graph between component functions fi, i ∈ [m] and variables
xj, j ∈ [n] induced by the group sparsity structure of a function f : Rn → Rm. An edge between
fi and xj conveys that the ith component function depends on the jth coordinate of the input.

2. Regularizes of the form R(U>x), where R is coordinate-separable, and U has
sparse columns and so (U>x) = u>i x depends only on the nonzero entries of Ui;

3. Neural networks, where the gradients with respect to some weights can be com-
puted “locally”; and

4. ERM problems of the form

f (x) :=
n

∑
i=1

φi(〈w(i), x〉) (4)

where φi : R→ R, and w(i) is zero except in a few coordinates.

12.2 Coordinate Descent

Denote ∂i f = ∂ f
xi

. For each round t = 1, 2, . . . , the coordinate descent algorithm chooses
an index it ∈ [n], and computes

xt+1 = xt − ηt∂it f (xt) · eit . (5)

This algorithm is a special case of stochastic gradient descent. For

E[xt+1|xt] = xt − ηt E[∂it f (xt) · eit ] (6)

= xt −
ηt

n

n

∑
i=1

∂i f (xt) · ei (7)

= xt − ηt∇ f (xt) . (8)

2



Recall the bound for SGD: If E[gt] = ∇ f (xt), then SGD with step size η = 1
BR satisfies

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6
2BR√

T
(9)

where R2 is given by maxx∈Ω ‖x− x1‖2
2 and B = maxt E[‖gt‖2

2]. In particular, if we set
gt = n∂xit

f (xt) · eit , we compute that

E[‖gt‖2
2] =

1
n

n

∑
i=1
‖n · ∂xi f (xt) · ei‖2

2 = n‖∇ f (xt)‖2
2 . (10)

If we assume that f is L-Lipschitz, we additionally have that E[‖gt‖2] 6 nL2. This
implies the first result:

Proposition 12.1. Let f be convex and L-Lipschitz on Rn. Then coordinate descent with step
size η = 1

nR has convergence rate

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2LR
√

n/T (11)

12.3 Importance Sampling

In the above, we decided on using the uniform distribution to sample a coordinate. But
suppose we have more fine-grained information. In particular, what if we knew that
we could bound supx∈Ω ‖∇ f (x)i‖2 6 Li? An alternative might be to sample in a way
to take Li into account. This motivates the “importance sampled” estimator of ∇ f (x),
given by

gt =
1
pit
· ∂it f (xt) where it ∼ Cat(p1, . . . , pn) . (12)

Note then that E[gt] = ∇ f (xt), but

E[‖gt‖2
2] =

n

∑
i=1

(∂it f (xt))
2/p2

i (13)

6
n

∑
i=1

L2
i /p2

i (14)

In this case, we can get rates

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2R
√

1/T ·
√

n

∑
i=1

L2
i /p2

i (15)

In many cases, if the values of Li are heterogenous, we can optimize the values of pi.
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12.4 Importance Sampling For Smooth Coordinate Descent

In this section, we consider coordinate descent with a biased estimator of the gradient.
Suppose that we have, for x ∈ Rn and α ∈ R, the inequality

|∂xi f (x)− ∂xi f (x + αei)| 6 βi|α| (16)

where βi are possibly heterogenous. Note that if that f is twice-continuously differen-
tiable, the above condition is equivalent to ∇2

ii f (x) 6 βi, or Diag(∇2 f (x)) � diag(β).
Define the distribution pγ via

pγ
i =

β
γ
i

∑n
j=1 β

γ
j

(17)

We consider gradient descent with the rule called RCD(γ)

xt+1 = xt −
1

βit
· ∂it(xt) · eit , where it ∼ pγ (18)

Note that as γ → ∞, coordinates with larger values of βi will be selected more often.
Also note that this is not generally equivalent to SGD, because

E

[
1

βit
∂it(xt)ei

]
=

1
∑n

j=1 β
γ
j
·

n

∑
i=1

β
γ−1
i ∂i f (xt)ei =

1
∑n

j=1 β
γ
j
· ∇ f (xt) ◦ (β

γ−1
i )i∈[n] (19)

which is only a scaled version of ∇ f (xt) when γ = 1. Still, we can prove the following
theorem:

Theorem 12.2. Define the weighted norms

‖x‖2
[γ] :=

n

∑
i=1

x2
i β

γ
i and ‖x‖∗2[γ] :=

n

∑
i=1

x2
i β
−γ
i (20)

and note that the norms are dual to one another. We then have that the rule RCD(γ) produces
iterates satisfying

E[ f (xt)− arg min
x∈Rn

f (x)] 6
2R2

1−γ ·∑
n
i=1 β

γ
i

t− 1
, (21)

where R2
1−γ = supx∈Rn : f (x)6 f (x1)

‖x− x∗‖[1−γ].

Proof. Recall the inequality that for a general βg-smooth convex function g, one has that

g
(

u− 1
βg
∇g(u)

)
− g(u) 6 − 1

2βg
‖∇g‖2 (22)
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Hence, considering the functions gi(u; x) = f (x + uei), we see that ∂i f (x) = g′i(u; x),
and thus gi is βi smooth. Hence, we have

f
(

x− 1
βi
∇ f (x)ei

)
− f (x) = gi(0−

1
βg

g′i(0; x))− g(0; x) 6 −
g′i(u; x)2

2βi
= −∂i f (x)2

2βi
.(23)

Hence, if i pγ, we have

E[ f (x− 1
βi

∂i f (x)ei)− f (x)] 6
n

∑
i=1

pγ
i · −

∂i f (x)2

2βi
(24)

= − 1
2 ∑n

i=1 β
γ
i

n

∑
i=1

βγ−1∂i f (x)2 (25)

= −
‖∇ f (x)‖∗2[1−γ])

2 ∑n
i=1 β

γ
i

(26)

Hence, if we define δt = E[ f (xt)− f (x∗)], we have that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(27)

Moreover, with probability 1, one also has that f (xt+1) 6 f (xt), by the above. We now
continue with the regular proof of smooth gradient descent. Note that

δt 6 ∇ f (xt)
>(xt − x∗)

6 ‖∇ f (xt)‖∗[1−γ]‖xt − x∗‖[1−γ]

6 R1−γ‖∇ f (xt)‖∗[1−γ] .

Putting these things together implies that

δt+1 − δt 6 −
δ2

t
2R2

1−γ ∑n
i=1 β

γ
i

(28)

Recall that this was the recursion we used to prove convergence in the non-stochastic
case. �

Theorem 12.3. If f is in addition α-strongly convex w.r.t to ‖ · ‖[1−γ], then we get

E[ f (xt+1)− arg min
x∈Rn

f (x)] 6

(
1− α

∑n
i=1 β

γ
i

)t

( f (x1)− f (x∗)) . (29)

Proof. We need the following lemma:

Lemma 12.4. Let f be an α-strongly convex function w.r.t to a norm ‖ · ‖. Then, f (x) −
f (x∗) 6 1

2α‖∇ f (x)‖2
∗ .
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Proof.

f (x)− f (y) 6 ∇ f (x)>(x− y)− α

2
‖x− y‖2

2

6 ‖∇ f (x)‖∗‖x− y‖2 − α

2
‖x− y‖2

2

6 max
t
‖∇ f (x)‖∗t−

α

2
t2

=
1

2α
‖∇ f (x)‖2

∗ .

�

Lemma 12.4 shows that

‖∇ f (xs)‖∗2[1−γ] > 2αδs .

On the other hand, Theorem 12.2 showed that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(30)

Combining these two, we get

δt+1 − δt 6 − αδt

∑n
i=1 β

γ
i

(31)

δt+1 6 δt

(
1− α

∑n
i=1 β

γ
i

)
. (32)

Applying the above inequality recursively and recalling that δt = E[ f (xt) − f (x∗)]
gives the result.

�

12.5 Random Coordinate vs. Stochastic Gradient Descent

What’s surprising is that RCD(γ) is a descent method, despite being random. This is
not true of normal SGD. But when does RCD(γ) actually do better? If γ = 1, the savings
are proportional to the ratio of ∑i=1 βi/β · (Tcoord/Tgrad). When f is twice differentiable,
this is the ratio of

tr(maxx∇2 f (x))
‖maxx∇2 f (x)‖op

(Tcoord/Tgrad) (33)
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12.6 Other Extensions to Coordinate Descent

1. Non-Stochastic, Cyclic SGD

2. Sampling with Replacement

3. Strongly Convex + Smooth!?

4. Strongly Convex (generalize SGD)

5. Acceleration? See [TVW+17]
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