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11 Learning, stability, regularization

In this lecture we take a look at machine learning, and empirical risk minimization in
particular. We define the distribution of our data as D over X×Y, where X ⊆ Rd and
Y is some discrete set of class labels. For instance, in a binary classification tasks with
two labels Y might be Y = {−1, 1}.

• A “model” is specified by a set of parameters w ∈ Ω ⊆ Rn

• The “loss function” is denoted by ` : Ω× (X×Y)→ R, note that `(w, z) gives the
loss of model w on instance z.

• The risk of a model is defined as R(w) = Ez∼D[`(w, z)].

Our goal is to find a model w that minimizes R(w).
One way to accomplish this is to use stochastic optimization directly on the popula-

tion objective:
wt+1 = wt − η∇`(wt, zt) z ∼ D

When given a finite data set, however, it is usually effective to make multiple passes
over the data. In this case, the stochastic gradient method may no longer optimize risk
directly.
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11.1 Empirical risk and generalization error

Consider a finite sample Suppose S = ((x1, y1), ......, (xm, ym)) ∈ (X × Y)m, where
zi = (xi, yi) represents the i-th labeled example. The empirical risk is defined as

RS(w) =
1
m

m

∑
i=1

`(w, zi) .

Empirical risk minimization is commonly used as a proxy for minimizing the unknown
population risk. But how good is this proxy? Ideally, we would like that the point w
that we find via empirical risk minimization has RS(w) ≈ R(w). However, this may not
be the case, since the risk R(w) captures loss on unseen example, while the empirical
risk RS(w) captures loss on seen examples. Generally, we expect to do much better on
seen examples than unseen examples. This performance gap between seen and unseen
examples is what we call generalization error.

Definition 11.1 (Generalization error). We define the generalization error of a model w as

εgen(w) = R(w)− Rs(w) .

Note the following tautological, yet important identity:

R(w) = RS(w) + εgen(w) (1)

What this shows in particular is that if we manage to make the empirical risk RS(w)
small through optimization, then all that remains to worry about is generalization error.

So, how can we bound generalization error? The fundamental relationship we’ll
establish in this lecture is that generalization error equals an algorithmic robustness
property that we call algorithmic stability. Intuitively, algorithmic stability measures how
sensitive an algorithm is to changes in a single training example.

11.2 Algorithmic stability

To introduce the idea of stability, we choose two independent samples S = (z1, ..., zm)
and S′ = (z′1, ..., z′m), each drawn independently and identically from D. Here, the
second sample S′ is called a ghost sample and mainly serves an analytical purpose.

Correlating the two samples in a single point, we introduce the hybrid sample S(i)

as:
S(i) = (z1, ..., zi−1, z′i, zi+1, ... , zm)

Note that here the i-th example comes from S′, while all others come from S.
With this notation at hand, we can introduce a notion of average stability.

Definition 11.2 (Average stability). The average stability of an algorithm A : (X×Y)m →
Ω:

∆(A) = E
S,S′

[
1
m

m

∑
i=1

(
`(A(S), z′i)− `(A(S(i)), z′i)

)]
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This definition can be interpreted as comparing the performance of the algorithm
on an unseen versus a seen example. This is the intuition why average stability, in fact,
equals generalization error.

Theorem 11.3.
E[εgen(A)] = ∆(A)

Proof. Note that

E[εgen(A)] = E [R(A(S))− RS(A(S))] ,

E [RS(A(S))]] = E

[
1
m

m

∑
i=1

`(A(S), zi)

]
,

E[R(A(S))] = E

[
1
m

m

∑
i=1

`(A(S), z′i)

]
.

At the same time, since zi and z′i are identically distributed and independent of the other
examples, we have

E `(A(S), zi) = E `(A(S(i)), z′i) .

Applying this identity to each term in the empirical risk above, and comparing with the
definition of ∆(A), we conclude E[R(A(S))− RS(A(S))] = ∆(A) �

11.2.1 Uniform stability

While average stability gave us an exact characterization of generalization error, it can
be hard to work with the expectation over S and S′. Uniform stability replaces the
averages by suprema, leading to a stronger but useful notion [BE02].

Definition 11.4 (Uniform stability). The uniform stability of an algorithm A is defined
as

∆sup(A) = sup
S,S′∈(X×Y)m

sup
i∈[m]

|`(A(S), z′i)− `(A(S(i), z′i)|

Since uniform stability upper bounds average stability, we know that uniform
stability upper bounds generalization error (in expectation).

Corollary 11.5. E[εgen(A)] 6 ∆sup(A)

This corollary turns out to be surprisingly useful since many algorithms are uni-
formly stable. For instance, strongly convex loss function is sufficient for stability, and
hence generalization as we will show next.

3



11.3 Stability of empirical risk minimization

The next theorem due to [SSSSS10] shows that empirical risk minimization of a strongly
convex loss function is uniformly stable.

Theorem 11.6. Assume `(w, z) is α-strongly convex over the domain Ω and L-Lipschitz. Let
ŵS = arg minw∈Ω

1
m ∑m

i=1 `(w, zi) denote the empirical risk minimizer (ERM). Then, ERM
satisfies

∆sup(ERM) 6
4L2

αm
.

An interesting point is that there is no explicit reference to the complexity of the
class. In the following we present the proof.

Proof. Denote by ŵS the empirical risk minimizer on a sample S. Fix arbitrary samples
S, S′ of size m and an index i ∈ [m]. We need to show that

|(`(ŵS(i) , z′i)− `(ŵS, z′i))| 6
4L2

αm
.

On one hand, by strong convexity we know that

RS(ŵS(i))− RS(ŵS) >
α

2
‖ŵS − ŵS(i)‖2 .

On the other hand,

RS(ŵS(i))− RS(ŵS)

=
1
m
(`(ŵS(i) , zi)− `(ŵS, zi)) +

1
m ∑

i 6=j
(`(ŵS(i) , zj)− `(ŵS, zj))

=
1
m
(`(ŵS(i) , zi)− `(ŵS, zi)) +

1
m
(`(ŵS, z′i)− `(ŵS(i) , z′i)) +

(
RS(i)(ŵS(i))− RS(i)(ŵS)

)
6

1
m
|`(ŵS(i) , zi)− `(ŵS, zi)|+

1
m
|(`(ŵS, z′i)− `(ŵS(i) , z′i))|

6
2L
m
‖ŵS(i) − ŵS‖ .

Here, we used that
RS(i)(ŵS(i))− RS(i)(ŵS)) 6 0

and the fact that ` is L−lipschitz.
Putting it all together ‖ŵS(i) − ŵS‖ 6 4L

αm . Then by the Lipschitz condition we have
that

1
m
|(`(ŵS(i) , z′i)− `(ŵS, z′i))| 6 L‖ŵS(i) − ŵS‖ 6

4L2

αm
.

Hence, ∆sup(ERM) 6 4L2

αm .
�
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11.4 Regularization

Not all the ERM problems are strongly convex. However, if the problem is convex we
can consider the regularized objective

r(w, z) = `(w, z) +
α

2
‖w‖2

The regularized loss r(w, z) is α−strongly convex. The last term is named `2-
regularization, weight decay or Tikhonov regularization depending on the field you
work on. Therefore, we now have the following chain of implications:

regularization⇒ strong convexity⇒ uniform stability⇒ generalization

We can also show that solving the regularized objective also solves the unregularized
objective. Assume that Ω ⊆ B2(R), by setting α ≈ L2

R2m we can show that the minimizer
of the regularized risk also minimizes the unregularized risk up to error O( LR√

m ). More-

over, by the previous theorem the generalized error will also be O( LR√
m ). See Theorem 3

in [SSSSS10] for details.

11.5 Implicit regularization

In implicit regularization the algorithm itself regularizes the objective, instead of explic-
itly adding a regularization term. The following theorem describes the regularization
effect of the Stochastic Gradient Method (SGM).

Theorem 11.7. Assume `(·, z) is convex, β-smooth and L-Lipschitz. If we run SGM for T
steps, then the algorithm has uniform stability

∆sup(SGMT) 6
2L2

m

T

∑
t=1

ηt

Note for ηt ≈ 1
m then ∆sup(SGMT) = O( log(T)

m ), and for ηt ≈ 1√
m and T = O(m)

then ∆sup(SGMT) = O( 1√
m ). See [HRS15] for proof.
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