
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

May 3, 2018

10 Stochastic optimization

The goal in stochastic optimization is to minimize functions of the form

f (x) = E
z∼D

g(x, z)

which have stochastic component given by a distribution D. In the case where the
distribution has finite support, the function can be written as

f (x) =
1
m

m

∑
i=1

fi(x) .

To solve these kinds of problems, we examine the stochastic gradient descent method
and some if its many applications.

10.1 The stochastic gradient method

Following Robbins-Monro [RM51], we define the stochastic gradient method as follows.

Definition 10.1 (Stochastic gradient method). The stochastic gradient method starts
from a point x0 ∈ Ω and proceeds according to the update rule

xt+1 = xt − ηt∇ fit(xt)

where it ∈ {1, . . . , m} is either selected at random at each step, or cycled through a
random permutation of {1, . . . , m}.

1



Either of the two methods for selecting it above, lead to the fact that

E∇ fit(x) = ∇ f (x)

This is also true when f (x) = E g(x, z) and at each step we update according to∇g(x, z)
for randomly drawn z ∼ D.

10.1.1 Sanity check

Let us check that on a simple problem that the stochastic gradient descent yields the
optimum. Let p1, . . . , pm ∈ Rn, and define f : Rn → R+:

∀x ∈ Rn, f (x) =
1

2m

m

∑
i=1
‖x− pi‖2

2

Note that here fi(x) = 1
2‖x− pi‖2

2 and ∇ fi(x) = x− pi. Moreover,

x∗ = argmin
x∈Rd

f (x) =
1
m

m

∑
i=1

pi

Now, run SGM with ηt =
1
t in cyclic order i.e. it = t and x0 = 0:

x0 = 0

x1 = 0− 1
1
(0− p1) = p1

x2 = p1 −
1
2
(p1 − p2) =

p1 + p2

2
...

xn =
1
m

m

∑
i=1

pi = x∗

10.2 The Perceptron

The New York Times wrote in 1958 that the Perceptron [Ros58] was:

the embryo of an electronic computer that [the Navy] expects will be able to walk,
talk, see, write, reproduce itself and be conscious of its existence.

So, let’s see.

Definition 10.2 (Perceptron). Given labeled points ((x1, y1), . . . , (xm, ym)) ∈ (Rn ×
{−1, 1})m, and and initial point w0 ∈ Rn, the Perceptron is the following algorithm. For
it ∈ {1, . . . , m} selected uniformly at random,

wt+1 = wt(1− γ) + η

{
yit xit if yit〈wt, xit〉 < 1
0 otherwise

2

https://www.nytimes.com/1958/07/08/archives/new-navy-device-learns-by-doing-psychologist-shows-embryo-of.html


Reverse-engineering the algorithm, the Perceptron is equivalent to running the SGM
on the Support Vector Machine (SVM) objective function.

Definition 10.3 (SVM). Given labeled points ((x1, y1), . . . , (xm, ym)) ∈ (Rn×{−1, 1})m,
the SVM objective function is:

f (w) =
1
n

m

∑
i=1

max(1− yi〈w, xi〉, 0) + λ‖w‖2
2

The loss function max(1− z, 0) is known as the Hinge Loss. The extra term λ‖w‖2
2 is

known as the regularization term.

10.3 Empirical risk minimization

We have two spaces of objects X and Y , where we think of X as the space of instances
or examples, and Y is a the set of labels or classes.

Our goal is to learn a function h : X → Y which outputs an object y ∈ Y , given
x ∈ X . Assume there is a joint distribution D over the space X ×Y and the training set
consists of m instances S = ((x1, y1), . . . , (xm, ym)) drawn i.i.d. from D.

We also define a non-negative real-valued loss function `(y′, y) to measure the
difference between the prediction y′ and the true outcome y.

Definition 10.4. The risk of a function h : X → Y is defined as

R[h] = E(x,y)∼D`(h(x), y) .

The ultimate goal of a learning algorithm is to find h∗ among a class of functionsH
that minimizes R[h]:

h∗ ∈ arg min
h∈H

R[h]

In general, the risk R[h] cannot be computed because the joint distribution is unknown.
Therefore, we instead minimize a proxy objective known as empirical risk and defined

by averaging the loss function over the training set:

RS[h] =
1
m

m

∑
i=1

`(h(xi), yi)

An empirical risk minimizer is any point h∗ ∈ arg minh∈H RS[h].
The stochastic gradient method can be thought of as minimizing the risk directly,

if each example is only used once. In cases where we make multiple passes over the
training set, it is better to think of it as minimizing the empirical risk, which can give
different solutions than minimizing the risk. We’ll develop tools to relate risk and
empirical risk in the next lecture.

3



10.4 Online learning

An interesting variant of this learning setup is called online learning. It arises when we
do not have a set of training data, but rather must make decisions one-by-one.

Taking advice from experts. Imagine we have access to the predictions of n experts.
We start from an initial distribution over experts, given by weights w1 ∈ ∆n = {w ∈
Rn : ∑i wi = 1, wi > 0}.

At each step t = 1, . . . , T:

• we randomly choose an expert according to wt

• nature deals us a loss function ft ∈ [−1, 1]n, specifying for each expert i the
loss ft[i] incurred by the prediction of expert i at time t.

• we incur the expected loss Ei∼wt ft[i] = 〈wt, ft〉.

• we get to update our distribution to from wt to wt+1.

At the end of the day, we measure how well we performed relative to the best fixed
distribution over experts in hindsight. This is called regret:

R =
T

∑
t=1
〈wt, ft〉 − min

w∈∆n

T

∑
t=1
〈w, ft〉

This is a relative benchmark. Small regret does not say that the loss is necessarily small.
It only says that had we played the same strategy at all steps, we couldn’t have done
much better even with the benefit of hindsight.

10.5 Multiplicative weights update

Perhaps the most important online learning algorithm is the multiplicative weights update.
Starting from the uniform distribution w1, proceed according to the following simple
update rule for t > 1,

vt[i] = wt−1[i]e−η ft[i] (exponential weights update)
wt = vt/(∑i vt[i]) (normalize)

The question is how do we bound the regret of the multiplicative weights update? We
could do a direct analysis, but instead we’ll relate multiplicative weights to gradient
descent and use the convergence guarantees we already know.

Specifically, we will interpret multiplicative weights as an instance of mirror descent.
Recall that mirror descent requires a mirror map φ : Ω → R over a domain Ω ∈ Rn

where φ is strongly convex and continuously differentiable.

4



The associated projection is

Πφ
Ω(y) = argmin

x∈Ω
Dφ(x, y)

where Dφ(x, y) is Bregman divergence.

Definition 10.5. The Bregman divergence measures how good the first order approxi-
mation of the function φ is:

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)ᵀ(x− y)

The mirror descent update rule is:

∇φ(yt+1) = ∇φ(xt)− ηgt

xt+1 = Πφ
Ω(yt+1)

where gt ∈ ∂ f (xt). In the first homework, we proved the following results.

Theorem 10.6. Let ‖ · ‖ be an arbitrary norm and suppose that φ is α-strongly convex w.r.t. ‖ · ‖
on Ω. Suppose that ft is L-lipschitz w.r.t. ‖ · ‖. Then, we have

1
T

T

∑
t=1

ft(xt) 6
Dφ(x∗, x0)

Tη
+ η

L2

2α
.

Multiplicative weights are an instance of the mirror descent where φ(w) = ∑m
i=1 wi log(wi)

is the negative entropy function. We have that

∇φ(w) = 1 + log(w),

where the logarithm is elementwise. The update rule for mirror descent is

∇φ(vt+1) = ∇φ(wt)− ηt ft ,

which implies that
vt+1 = wte−ηt ft

and thus recovers the multiplicative weights update.
Now comes the projection step. The Bregman divergence corresponding to φ is

Dφ(x, y) = φ(x)− φ(y)−∇φ(y)T(x− y)
= ∑

i
xi log(xi/yi)−∑

i
xi + ∑

i
yi ,

which we recognize as the relative entropy or Kullback-Leibler divergence over the
probability simplex. We thus choose the domain Ω to be the probability simplex
Ω = {w ∈ Rn | ∑i wi = 1, wi > 0}. The projection

Πφ
Ω(y) = argmin

x∈Ω
Dφ(x, y)

turns out to just correspond to the normalization step in the update rule of the multi-
plicative weights algorithm.

5



Concrete rate of convergence. To get a concrete rate of convergence from the preced-
ing theorem, we still need to determine what value of the strong convexity constant α

we get in our setting. Here, we choose the norm to be the `∞-norm. It follows from
Pinsker’s inequality that φ is 1/2-strongly convex with respect to the `∞-norm. More-
over, in the `∞-norm all gradients are bounded by 1, since the loss ranges in [1, 1]. Finally,
the relative entropy between the initial uniform distribution any any other distribution
is at most log(n). Putting these facts together and balancing the step size η, we get the
normalized regret bound

O

(√
log n

T

)
.

In particular, this shows that the normalized regret of the multiplicative update rule is
vanishing over time.

References

[RM51] H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400–407, 1951.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, pages 65–386, 1958.

6


	Stochastic optimization
	The stochastic gradient method
	Sanity check

	The Perceptron
	Empirical risk minimization
	Online learning
	Multiplicative weights update


