
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

May 3, 2018

9 Lower bounds and trade-offs with robustness

In the first part of this lecture, we study whether the convergence rates derived in
previous lectures are tight. For several classes of optimization problems (smooth,
strongly convex, etc), we prove the answer is indeed yes. The highlight of this analysis
is to show the O(1/t2) rate achieved by Nesterov’s accelerated gradient method is
optimal (in a weak technical sense) for smooth, convex functions.

In the second part of this lecture, we go beyond studying convergence rates and
look towards other ways of comparing algorithms. We show the improved rates of
accelerated gradient methods come at a cost in robustness to noise. In particular, if we
restrict ourselves to only using approximate gradients, the standard gradient method
suffers basically no slowdown, whereas the accelerated gradient method accumulates
errors linearly in the number of iterations.

9.1 Lower bounds

Before launching into a discussion of lower bounds, it’s helpful to first recap the upper
bounds obtained thus far. For a convex function f , Table 1 summarizes the assumptions
and rates proved in the first several lectures.

Each of the rates in Table 1 is obtained using some variant of the gradient method.
These algorithms can be thought of as a procedure that maps a history of points and
subgradients (x1, g1, . . . , xt, gt) to a new point xt+1. To prove lower bounds, we restrict

1

Table 1: Upper Bounds from Lectures 2-8

Function class Algorithm Rate
Convex, Lipschitz Gradient descent RL/

√
t

Strongly convex, Lipschitz Gradient descent L2/(αt)
Convex, smooth Accelerated gradient descent βR2/t2

the class of algorithms to similar procedures. Formally, define a black-box procedure as
follows.

Definition 9.1 (Black-Box Procedure). A black-box procedure generates a sequence of
points {xt} such that

xt+1 ∈ x0 + span{g1, . . . , gt},

and gs ∈ ∂ f (xs).

Throughout, we will further assume x0 = 0. As expected, gradient descent is a
black-box procedure. Indeed, unrolling the iterates, xt+1 is given by

xt+1 = xt − η∇ f (xt)

= xt−1 − η∇ f (xt−2)− η∇ f (xt−1)

= x0 −
t

∑
i=0

η∇ f (xi).

We now turn to proving lower bounds on the convergence rate for any black-box
procedure. Our first theorem concerns the constrained, non-smooth case. The theorem
is originally from [Nes83], but the presentation will follow [Nes04].

Theorem 9.2 (Constrainted, Non-Smooth f). Let t 6 n, L, R > 0. There exists a convex
L-Lipschitz function f such that any black-box procedure satisfies

min
16s6t

f (xs)− min
x∈B2(R)

f (x) >
RL

2(1 +
√

t)
. (1)

Furthermore, there is an α-strongly convex, L-Lipschitz function f such that

min
16s6t

f (xs)− min
x∈B2(

L
2α)

f (x) >
L2

8αt
. (2)

The proof strategy is to exhibit a convex function f so that, for any black-box
procedure, span{g1, g2, . . . , gi} ⊂ span{e1, . . . , ei}, where ei is the i-th standard basis
vector. After t steps for t < n, at least n− t coordinates are exactly 0, and the theorem
follows from lower bounding the error for each coordinate that is identically zero.

2

Proof. Consider the function

f (x) = γ max
16i6t

x[i] +
α

2
‖x‖2,

for some γ, α ∈ R. In the strongly convex case, γ is a free parameter, and in the Lipschitz
case both α and γ are free parameters. By the subdifferential calculus,

∂ f (x) = αx + γ conv{ei : i ∈ argmax
16j6t

x(j)}.

The function f is evidently α-strongly convex. Furthermore, if ‖x‖ 6 R and g ∈ ∂ f (x),
then ‖g‖ 6 αR + γ, so f is (αR + γ)-Lipschitz on B2(R).

Suppose the gradient oracle returns gi = αx + γei, where i is the first coordinate
such that x[i] = max16j6t x[j]. An inductive argument then shows

xs ∈ span{e1, . . . , es−1}

Consequently, for s 6 t, f (xs) > 0. However, consider y ∈ Rn such that

y[i] =

{
− γ

αt if 1 6 i 6 t
0 otherwise.

Since 0 ∈ ∂ f (y), y is an minimizer of f with objective value

f (y) =
−γ2

αt
+

α

2
γ2

α2t
= − γ2

2αt
,

and hence f (xs)− f (y) > γ2

2αt . We conclude the proof by appropriately choosing α and
γ. In the convex, Lipschitz case, set

α =
L
R

1
1 +
√

t
and γ = L

√
t

1 +
√

t
.

Then, f is L-Lipschitz,

‖y‖ =

√
t
(
−γ

αt

)2

=
γ

α
√

t
= R

and hence

f (xs)− min
x∈B2(R)

f (x) = f (xs)− f (y) >
γ2

2αt
=

RL
2(1 +

√
t)

.

In the strongly-convex case, set γ = L
2 and take R = L

2α . Then, f is L-Lipschitz,

‖y‖ = γ

α
√

t
=

L
2α
√

t
=

R√
t
6 R,

3

and therefore

f (xs)− min
x∈B2(L/2α)

f (x) = f (xs)− f (y) >
LR
4t

=
L2

8αt
.

�

Next, we study the smooth, convex case and show the O(1/t2) rate achieved by
accelerated gradient descent is optimal.

Theorem 9.3 (Smooth- f). Let t 6 n−1
2 , β > 0. There exists a β-smooth convex quadratic f

such that any black-box method satisfies

min
16s6t

f (xs)− f (x?) >
3β‖x0 − x?‖2

2
32(t + 1)2 . (3)

Similar to the previous theorem, the proof strategy is to exhibit a pathological convex
function. In this case, we choose what Nesterov calls “the worst-function in the world”
[Nes04].

Proof. Without loss of generality, let n = 2t + 1. Let L ∈ Rn×n be the tridiagonal matrix

L =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 0 −1 2 · · · 0
...

...
...

...
0 0 0 0 · · · 2


.

The matrix L is almost the Laplacian of the cycle graph (in fact, it’s the Laplacian of the
chain graph).1 Notice

x>Lx = x[1]2 + x[n]2 +
n−1

∑
i=1

(x[i]− x[i + 1])2,

and, from this expression, it’s a simple to check 0 � L � 4I. Define the following
β-smooth convex function

f (x) =
β

8
x>Lx− β

4
〈x, e1〉.

The optimal solution x? satisfies Lx? = e1, and solving this system of equations gives

x?[i] = 1− i
n + 1

,

1https://en.wikipedia.org/wiki/Laplacian_matrix

4

https://en.wikipedia.org/wiki/Laplacian_matrix

which has objective value

f (x?) =
β

8
x?>Lx? − β

4
〈x?, e1〉

= −β

8
〈x?, e1〉 = −

β

8
(1− 1

n + 1
).

Similar to the proof of Theorem 9.2, we can argue

xs ∈ span{e1, . . . , es−1},

so if x0 = 0, then xs[i] = 0 for i > s for any black-box procedure. Let x?s = argminx : i>s,x[i]=0 f (x).
Notice x?s is the solution of a smaller s× s Laplacian system formed by the first s rows
and columns of L, so

x?s [i] =

{
1− i

s+1 if i < s
0 otherwise,

which has objective value f (x?s) = −
β
8 (1−

1
s+1). Therefore, for any s 6 t,

f (xs)− f (x?) > f (x?t)− f (x?)

>
β

8

(
1

t + 1
− 1

n + 1

)
=

β

8

(
1

t + 1
− 1

2(t + 1)

)
=

β

8
1

2(t + 1)
.

To conclude, we bound the initial distance to the optimum. Recalling x0 = 0,

‖x0 − x?‖2 = ‖x?‖2 =
n

∑
i=1

(1− i
n + 1

)2

= n− 2
n + 1

n

∑
i=1

i +
1

(n + 1)2

n

∑
i=1

i2

6 n− 2
n + 1

n

∑
i=1

i +
1

(n + 1)2

∫ n+1

1
x2 dx

6 n− 2
n + 1

n(n + 1)
2

+
1

(n + 1)2
(n + 1)3

3

=
(n + 1)

3

=
2(t + 1)

3
.

5

Combining the previous two displays, for any s 6 t,

f (xs)− f (x?) >
β

8
1

2(t + 1)
>

3β‖x0 − x?‖2

32(t + 1)2 .

�

9.2 Robustness and acceleration trade-offs

The first part of the course focused almost exclusively on convergence rates for optimiza-
tion algorithms. From this perspective, a better algorithm is one with a faster rate of
convergence. A theory of optimization algorithms that stops with rates of convergence
is incomplete. There are often other important algorithm design goals, e.g. robustness
to noise or numerical errors, that are ignored by focusing on converges rates, and when
these goals are of primary importance, excessive focus on rates can lead practitioners to
choose the wrong algorithm. This section deals with one such case.

In the narrow, technical sense of the previous section, Nesterov’s Accelerated Gra-
dient Descent is an “optimal” algorithm, equipped with matching upper and lower
bounds on it’s rate of convergence. A slavish focus on convergence rates suggests
one should then always use Nesterov’s method. Before coronating Nesterov’s method,
however, it is instructive to consider how it performs in the presence of noise.

Figure 1 compares the performance of vanilla gradient descent and Nesterov’s
accelerated gradient descent on the function f used in the proof of Theorem 9.3. In the
noiseless case, the accelerated method obtains the expected speed-up over gradient
descent. However, if we add a small amount of spherical noise to the gradients, the
speed-up not only disappears, but gradient descent begins to outperform the accelerated
method, which begins to diverge after a large number of iterations.

The preceding example is not wickedly pathological in any sense. Instead, it is
illustrative of a much broader phenomenon. Work by Devolder, Glineur and Nes-
terov [DGN14] shows there is a fundamental trade-off between acceleration and robust-
ness, in a sense made precise below.

First, define the notion of an inexact gradient oracle. Recall for a β-smooth convex
function f and any x, y ∈ Ω,

0 6 f (x)− (f (y) + 〈∇ f (y), x− y〉) 6 β

2
‖x− y‖2. (4)

For any y ∈ Ω, an exact first-order oracle then returns a pair (f (y), g(y)) = (f (y),∇ f (y))
that satisfies (4) exactly for every x ∈ Ω. An inexact oracle, returns a pair so that (4)
holds up to some slack δ.

Definition 9.4 (Inexact oracle). Let δ > 0. For any y ∈ Ω, a δ-inexact oracle returns a
pair (fδ(y), gδ(y)) such that for every x ∈ Ω,

0 6 f (x)− (f (y) + 〈∇ f (y), x− y〉) 6 β

2
‖x− y‖2 + δ .

6

0 20 40 60 80 100
iterate

10 2

10 1

suboptimality (dimension = 100, noise = 0.1, trials = 100)
gd
nag
noisy gd
noisy nag

Figure 1: The optimality gap for iterations of gradient descent and Nesterov accelerated gradient
descent applied to the worst function in the world with dimension n = 100. Notice with exact
oracle gradients, acceleration helps significantly. However, when adding uniform spherical
random noise with radius δ = 0.1 to the gradient, stochastic gradient descent remains robust
while stochastic accelerated gradient accumulates error. The stochastic results are averaged over
100 trials.

Consider running gradient descent with a δ-inexact oracle. Devolder et al. [DGN14]
show, after t steps,

f (xt)− f (x?) 6
βR2

2t
+ δ.

Comparing this rate with Table 1, the plain gradient method is not affected by the
inexact oracle and doesn’t accumulate errors. On the other hand, if the accelerated
gradient method is run with a δ-inexact oracle, then after t steps,

f (xt)− f (x?) 6
4βR2

(t + 1)2 +
1
3
(t + 3)δ.

In other words, the accelerated gradient method accumulates errors linearly with the
number of steps! Moreover, this slack is not an artifact of the analysis. Any black-box
method must accumulate errors if it is accelerated in the exact case, as the following
theorem makes precise.

Theorem 9.5 (Theorem 6 in [DGN14]). Consider a black-box method with convergence rate
O
(

βR2

tp

)
when using an exact oracle. With a δ-inexact oracle, suppose the algorithm achieves a

7

rate

f (xt)− f (x?) 6 O
(

βR2

tp

)
+ O (tqδ) , (5)

then q > p− 1.

In particular, for any accelerated method has p > 1, and consequently q > 1 so the
method accumulates at least O(tp−1δ) error with the number of iterations.

References

[DGN14] Olivier Devolder, François Glineur, and Yurii Nesterov. First-order methods
of smooth convex optimization with inexact oracle. Mathematical Programming,
146(1-2):37–75, 2014.

[Nes83] Yurii Nesterov. A method of solving a convex programming problem with
convergence rate O(1/k2). Doklady AN SSSR (translated as Soviet Mathematics
Doklady), 269:543–547, 1983.

[Nes04] Yurii Nesterov. Introductory Lectures on Convex Programming. Volume I: A basic
course. Kluwer Academic Publishers, 2004.

8

	Lower bounds and trade-offs with robustness
	Lower bounds
	Robustness and acceleration trade-offs

