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8 Nesterov’s accelerated gradient descent

Previously, we saw how we can accelerate gradient descent for minimizing quadrat-
ics f (x) = x>Ax + b>x, where A is a positive definite matrix. In particular, we achieved
a quadratic improvement in the dependence on the condition number of the matrix A
than what standard gradient descent achieved. The resulting update rule had the form

xt+1 = xt − ηt∇ f (xt) + µ(xt − xt−1) ,

where we interpreted the last term as a form of “momentum”. In this simple form, the
update rule is sometimes called Polyak’s heavy ball method.

To get the same accelerated convergence rate for general smooth convex functions
that we saw for quadratics, we will have to work a bit harder and look into Nesterov’s
celebrated accelerated gradient method [Nes83, Nes04]

Specifically, we will see that Nesterov’s method achieves a convergence rate ofO
(

β
t2

)
for β-smooth functions. For smooth functions which are also α-strongly convex, we will

achieve a rate of exp
(
−Ω

(√
β
α t
))

.

The update rule is a bit more complicated than the plain momentum rule and
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proceeds as follows:

x0 = y0 = z0,
xt+1 = τzt + (1− τ)yt (t > 0)

yt = xt −
1
β
∇ f (xt) (t > 1)

zt = zt−1 − η∇ f (xt) (t > 1)

Here, the parameter β is the smoothness constant of the function we’re minimizing. The
step size η and the parameter τ will be chosen below so as to give us a convergence
guarantee.

8.1 Convergence analysis

We first show that for a simple setting of the step sizes, the algorithm reduces its
initial error from some value d to d

2 . We will then repeatedly restart the algorithm to
continue reducing the error. This is a slight departure from Nesterov’s method which
does not need restarting, albeit requiring a much more delicate step size schedule that
complicates the analysis.

Lemma 8.1. Suppose f : Rn → R is a convex, β-smooth function that attains its minimum at
a point x∗ ∈ Rn. Assume that the initial point satisfies ‖x0− x∗‖ 6 R and f (x0)− f (x∗) 6 d.
Put η = R√

dβ
, and choose τ such that 1−τ

τ = ηβ. Then after T = 4R
√

β/d steps, the average

iterate x̄ = 1
T ∑T−1

k=0 xt satisfies
f (x̄)− f (x∗) 6 d/2 .

Proof. When introducing smoothness in Section ??, we saw Lemma ?? that implies

f (yt)− f (xt) 6 −
1

2β
‖∇ f (xt)‖2 . (1)

By the “Fundamental Theorem of Optimization" (see Lecture 2), we have for all u ∈ Rn :

η〈∇ f (xt+1), zt − u〉 = η2

2
‖∇ f (xt+1)‖2 +

1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2 . (2)

Substituting the first equation yields

η〈∇ f (xt+1, zt − u〉 6 η2β( f (xt+1)− f (yt+1)) +
1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2 (3)

Working towards a term that we can turn into a telescoping sum, we compute the
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following difference

η〈∇ f (xt+1), xt+1 − u〉 − η〈∇ f (xt+1), zt − u〉
= η〈∇ f (xt+1), xt+1 − zt〉

=
1− τ

τ
η〈∇ f (xt+1), yt − xt+1〉

6
1− τ

τ
η( f (yt)− f (xt+1)) (by convexity). (4)

Combining (3) and (4), and setting 1−τ
τ = ηβ yield for all u ∈ Rn :

η〈∇ f (xt+1), xt+1 − u〉 6 η2β( f (yt)− f (yt+1)) +
1
2
‖zt − u‖2 − 1

2
‖zt+1 − u‖2.

Proceeding as in our basic gradient descent analysis, we apply this inequality for u = x∗,
sum it up from k = 0 to T and exploit the telescoping sum.

ηT( f (x̄)− f (x∗)) 6
T

∑
k=0

η〈∇ f (xt+1), xt+1 − x∗〉 6 η2βd + R2,

By rearranging,

f (x̄)− f (x∗) 6
ηβd

T
+

R2

ηT
=

2
√

βd
T

R 6
d
2

,

since η = R/
√

βd and T > 4R
√

β/D. �

This lemma appears in work by Allen-Zhu and Orecchia [AZO17], who interpret
Nesterov’s method as a coupling of two ways of analyzing gradient descent. One is
the the inequality in (1) that is commonly used in the analysis of gradient descent for
smooth functions. The other is Equation 2 commonly used in the convergence analysis
for non-smooth functions. Both were shown in our Lecture 2.

Theorem 8.2. Under the assumptions of Lemma 8.1, by restarting the algorithm repeatedly, we
can find a point x such that

f (x)− f (x∗) 6 ε

with at most O(R
√

β/ε) gradient updates.

Proof. By Lemma 8.1, we can go from error d to d/2 with CR
√

β/d gradient updates for
some constant C. Initializing each run with the output of the previous run, we can there
for successively reduce the error from an initial value d to d/2 to d/4 and so on until
we reach error ε after O(log(d/ε)) runs of the algorithm. The total number of gradient
steps we make is

CR
√

β/d + CR
√

2β/d + · · ·+ CR
√

β/ε = O
(

R
√

β/ε
)

.

Note that the last run of the algorithm dominates the total number of steps up to a
constant factor. �
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8.2 Strongly convex case

We can prove a variant of Lemma 8.1 that applies when the function is also α-strongly
convex, ultimately leading to a linear convergence rate. The idea is just a general trick
to convert a convergence rate for a smooth function to a convergence rate in domain
using the definition of strong convexity.

Lemma 8.3. Under the assumption of Lemma 8.1 and the additional assumption that the

function f is α-strongly convex, we can find a point x with T = O
(√

β
α

)
gradient updates

such that
‖x̄− x∗‖2 6

1
2
‖x0 − x∗‖2 .

Proof. Noting that ‖x0 − x∗‖2 6 R2, we can apply Theorem 8.2 with error parameter
ε = α

4‖x0 − x∗‖2 to find a point x such that

f (x)− f (x∗) 6
α

4
‖x0 − x∗‖2 ,

while only making O
(√

β/α
)

many steps. From the definition of strong convexity it
follows that

α

2
‖x− x∗‖2 6 f (x)− f (x∗) .

Combining the two inequalities gives the statement we needed to show. �

We see from the lemma that for strongly convex function we actually reduce the
distance to the optimum in domain by a constant factor at each step. We can therefore
repeatedly apply the lemma to get a linear convergence rate.

Table 1 compares the bounds on error ε(t) as a function of the total number of steps
when applying Nesterov’s method and ordinary gradient descent method to different
functions.

Nesterov’s Method Ordinary GD Method
β-smooth, convex O

(
β/t2) O (β/t)

β-smooth, α-strongly convex exp
(
−Ω(t

√
α/β)

)
exp (−Ω(tα/β))

Table 1: Bounds on error ε as a function of number of iterations t for different methods.
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