
Course Notes for EE227C (Spring 2018):
Convex Optimization and Approximation

Instructor: Moritz Hardt
Email: hardt+ee227c@berkeley.edu

Graduate Instructor: Max Simchowitz
Email: msimchow+ee227c@berkeley.edu

October 15, 2018

7 Krylov subspaces, eigenvalues, and conjugate gradient

In this lecture, we’ll develop a unified view of solving linear equations Ax = b and
eigenvalue problems Ax = λx. In particular, we will justify the following picture.

Ax = b Ax = λx
Basic Gradient descent Power method

Accelerated Chebyshev iteration Chebyshev iteration
Accelerated and step size free Conjugate gradient Lanczos

What we saw last time was the basic gradient descent method and Chebyshev
iteration for solving quadratics. Chebyshev iteration requires step sizes to be carefully
chosen. In this section, we will see how we can get a “step-size free” accelerated method,
known as conjugate gradient.

What ties this all together is the notion of a Krylov subspace and its corresponding
connection to low-degree polynomials.

Our exposition follows the excellent Chapter VI in Trefethen-Bau [TD97].

7.1 Krylov subspaces

The methods we discuss all have the property that they generate a sequence of points
iteratively that is contained in a subspace called the Krylov subspace.

1

Definition 7.1 (Krylov subspace). For a matrix A ∈ Rnxn and a vector b ∈ Rn, the
Krylov sequence of order t is b, Ab, A2b,, Atb. We define the Krylov subspace as

Kt(A, b) = span({b, Ab, A2b, . . . , At}) ⊆ Rn .

Krylov subspace naturally connect to polynomial approximation problems. To see
this, recall that a degree t matrix polynomial is an expression of the form p(A) =

∑t
i=1 αi Ai.

Fact 7.2 (Polynomial connection). The Krylov subspace satisfies

Kt(A, b) = {p(A)b : deg(p) 6 t} .

Proof. Note that

v ∈ Kt(A, b)⇐⇒ ∃αi : v = α0b + α1Ab + · · · αt Atb

�

From here on, suppose we have a symmetric matrix A ∈ Rn×n that has orthonormal
eigenvectors u1 . . . un and ordered eigenvalues λ1 > λ2 . . . > λn. Recall, this means

〈ui, uj〉 = 0, for i 6= j

〈ui, ui〉 = 1

Using that A = ∑i λiuiu>i , it follows

p(A)ui = p(λi)ui .

Now suppose we write b in the eigenbasis of A as

b = α1u1 + ... + αnun

with αi = 〈ui, b〉. It follows that

p(A)b = α1p(λ1)u1 + α2p(λ2)u2 + . . . + αn p(λn)un .

7.2 Finding eigenvectors

Given these ideas, one natural approach to finding eigenvectors is to find a polynomial p
such that

p(A)b ≈ α1u1 .

Ideally, we would have p(λ1) = 1 and p(λi) = 0 for i > 1, but this is in general
impossible unless we make he degree of our polynomial as high as the number of
distinct eigenvalues of A. Keep in mind that the degree ultimately determines the

2

number of steps that our iterative algorithm makes. We’d therefore like to keep it as
small as possible.

That’s why we’ll settle for an approximate solution that has p(λ1) = 1 and makes
maxi>1 p(λi) as small as possible. This will give us a close approximation to the top
eigenvalue. In practice, we don’t know the value λ1 ahead of time. What we there-
fore really care about is the ratio p(λ1)/p(λ2) so that no matter what λ1, the second
eigenvalue will get mapped to a much smaller value by p.

We consider the following simple polynomial p(λ) = λt that satisfies

p(λ2)/p(λ1) =

(
λ2

λ1

)t

In the case where λ1 = (1 + ε)λ2 we need t = O(1/ε) to make the ratio small.
The next lemma turns a small ratio into an approximation result for the top eigen-

vector. To state the lemma, we recall that tan∠(a, b) is the tangent of the angle between
a and b.

Lemma 7.3. tan∠(p(A)b, u1) 6 maxj>1
|p(λj)|
|p(λ1)|

tan∠(b, u1)

Proof. We define θ = ∠(u1, b). By this, we get

sin2 θ = ∑
j>1

α2
j

cos2 θ = |α1|2

tan2 θ = ∑
j>1

|α2
j |

|α1|2

Now we can write:

tan2∠(p(A)b, u1) = ∑
j>1

|p(λj)αj|2

|p(λ1)α1|2
6 max

j>1

|p(λj)|2

|p(λ1)|2 ∑
j>1

αj|2

|α1|2

We note that this last sum ∑j>1
αj|2
|α1|2

= tan θ and we obtain our desired result. �

Applying the lemma to p(λ) = λt and λ1 = (1 + ε)λ2, we get

tan∠(p(A)b, u1) 6 (1 + ε)−t tan∠(u1, b) .

If there is a big gap between λ1 and λ2 this converges quickly but it can be slow if
λ1 ≈ λ2. It worth noting that if we choose b ∈ Rn to be a random direction, then

E [tan∠(u1, b)] = O
(√

n
)

.

Going one step further we can also see that the expression p(A)b = Atb can of course
be built iteratively by repeatedly multiplying by A. For reasons of numerical stability it

3

makes sense to normalize after each matrix-vector multiplication. This preserved the
direction of the iterate and therefore does not change our convergence analysis. The
resulting algorithms is the well known power method, defined recursively as follows:

x0 =
b
‖b‖

xt =
Axt−1

‖Axt−1‖

This method goes back more than hundred years to a paper by Müntz in 1913, but
continues to find new applications today.

7.3 Applying Chebyshev polynomials

As we would expect from the development for quadratics, we can use Chebyshev
polynomials to get a better solution the polynomial approximation problem that we
posed above. The idea is exactly the same with the small difference that we normalize
our Chebyshev polynomial slightly differently. This time around, we want to ensure
that p(λ1) = 1 so that we are picking out the first eigenvalue with the correct scaling.

Lemma 7.4. A suitably rescaled degree t Chebyshev polynomial achieves

min
p(λ1)=1

max
λ∈[λ2,λn]

p(λ) 6
2

(1 + max{
√

ε, ε})t

where ε = λ1
λ2
− 1 quantifies the gap between the first and second eigenvalue.

Note that the bound is much better than the previous one when ε is small. In the case
of quadratics, the relevant “ε-value” was the inverse condition number. For eigenvalues,
this turns into the gap between the first and second eigenvalue.

Ax = b Ax = λx
ε 1

κ = α
β

λ1
λ2
− 1

As we saw before, Chebyshev polynomials satisfy a recurrence relation that can be
used to derive an iterative method achieving the bound above. The main shortcoming
of this method is that it needs information about the location of the first and second
eigenvalue. Instead of describing this algorithm, we move on to an algorithm that
works without any such information.

7.4 Conjugate gradient method

At this point, we switch back to linear equations Ax = b for a symmetric positive
definite matrix A ∈ Rn×n. The method we’ll see is called conjugate gradient and is an

4

important algorithm for solving linear equations. Its eigenvalue analog is the Lanczos
method. While the ideas behind these methods are similar, the case of linear equations
is a bit more intuitive.

Definition 7.5 (Conjugate gradient method). We want to solve Ax = b, with A � 0
symmetric. The conjugate gradient method maintains a sequence of three points:

x0 = 0 (“candidate solution”)
r0 = b (“residual”)
p0 = r0 (“search direction”)

For t > 1 :

ηt =
‖rt−1‖2

〈pt−1, Apt−1〉
(“step size”)

xt = xt−1 + ηt pt−1

rt = rt−1 − ηt Apt−1

pt = rt +
‖rt‖2

‖rt−1‖2 pt−1

Lemma 7.6. The following three equations must always be true for the conjugate gradient
method algorithm:

• span({r0, ...rt−1}) = Kt(A, b)

• For j < t we have 〈rt, rj〉 = 0 and in particular rt ⊥ Kt(A, b).

• The search directions are conjugate p>i Apj = 0 for i 6= j.

Proof. Proof by induction (see Trefethen and Bau). Show that the conditions are true
initially and stay true when the update rule is applied. �

Lemma 7.7. Let ‖u‖A =
√

u>Au and 〈u, v〉A = u>Av and et = x∗− xt. Then et minimizes
‖x∗ − x‖A over all vectors x ∈ Kt−1.

Proof. We know that xt ∈ Kt. Let x ∈ Kt and define x = xt− δ. Then, e = x∗− x = et + δ.
We compute the error in the A norm:

‖x∗ − x‖2
A = (et + δ)>A(et + δ)

= e>t Aet + δ>Aδ + 2e>t Aδ

By definition e>t A = rt. Note that δ ∈ Kt. By Lemma 7.6, we have that rt ⊥ Kt(A, b).
Therefore, 2e>t Aδ = 0 and hence,

‖e‖2
A = ‖x∗ − x‖2

A = e>t Aet + δ>Aδ > ‖et‖A .

In the last step we used that A � 0. �

5

What the lemma shows, in essence, is that conjugate gradient solves the polynomial
approximation problem:

min
p : deg(p)6t,p(0)=1

‖p(A)e0‖A .

Moreover, it’s not hard to show that

min
p : deg(p)6t,p(0)=1

‖p(A)e0‖A

‖e0‖A
6 min

p : deg(p)6t,p(0)=1
max

λ∈Λ(A)
|p(λ)| .

In other words, the error achieved by conjugate gradient is no worse that the error
of the polynomial approximation on the RHS, which was solved by the Chebyshev
approximation. From here it follows that conjugate gradient must converge at least as
fast in ‖ · ‖A-norm than Chebyshev iteration.

References

[TD97] Lloyd N. Trefethen and David Bau, III. Numerical Linear Algebra. SIAM, 1997.

6

	Krylov subspaces, eigenvalues, and conjugate gradient
	Krylov subspaces
	Finding eigenvectors
	Applying Chebyshev polynomials
	Conjugate gradient method

