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6 Discovering acceleration

In this lecture, we seek to find methods that converge faster than those discussed in
previous lectures. To derive this accelerated method, we start by considering the special
case of optimizing quadratic functions. Our exposition loosely follows Chapter 17 in
Lax’s excellent text [Lax07].

6.1 Quadratics

Definition 6.1 (Quadratic function). A quadratic function f : Rn → R takes the form:

f (x) =
1
2

xT Ax− bTx + c,

where A ∈ Sn, b ∈ Rn and c ∈ R.

Note that substituting n = 1 into the above definition recovers the familiar univariate
quadratic function f (x) = ax2 + bx + c where a, b, c ∈ R, as expected. There is one
subtlety in this definition: we restrict A to be symmetric. In fact, we could allow
A ∈ Rn×n and this would define the same class of functions, since for any A ∈ Rn×n

there is a symmetric matrix Ã = 1
2

(
A + AT) for which:

xT Ax = xT Ãx ∀x ∈ Rn.
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Restricting A ∈ Sn ensures each quadratic function has a unique representation.
The gradient and Hessian of a general quadratic function take the form:

∇ f (x) = Ax− b

∇2 f (x) = A.

Note provided A is non-singular, the quadratic has a unique critical point at:

x∗ = A−1b.

When A � 0, the quadratic is strictly convex and this point is the unique global minima.

6.2 Gradient descent on a quadratic

In this section we will consider a quadratic f (x) where A is positive definite, and in
particular that:

αI � A � βI,

for some 0 < α < β. This implies that f is α-strongly convex and β-smooth.
From Theorem ?? we know that under these conditions, gradient descent with the

appropriate step size converges linearly at the rate exp
(
−t α

β

)
. Clearly the size of α

β can
dramatically affect the convergence guarantee. In fact, in the case of a quadratic, this is
related to the condition number of the matrix A.

Definition 6.2 (Condition number). Let A be a real matrix. Its condition number (with
respect to the Euclidean norm) is:

κ(A) =
σmax(A)

σmin(A)
,

the ratio of its largest and smallest eigenvalues.

So in particular, we have that κ(A) 6 β
α ; henceforth, we will assume that α, β

correspond to the minimal and maximal eigenvalues of A so that κ(A) = β
α . It follows

from Theorem ?? that gradient descent with a constant step size 1
β converges as

‖xt+1 − x∗‖2 6 exp
(
−t

1
κ

)
‖x1 − x∗‖2 .

In many cases, the function f is ill-conditioned and κ can easily take large values. In
this case, case convergence could be very slow as we will need t > κ before the error
gets small. Can we do better than this?

To answer this question, it will be instructive to analyze gradient descent specifically
for quadratic functions, and derive the convergence bound that we previously proved
for any strongly convex smooth functions. This exercise will show us where we are
losing performance, and suggest a method that can attain better guarantees.
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Theorem 6.3. Assume f : Rn → R is a quadratic where the quadratic coefficient matrix has a
condition number κ. Let x∗ be an optimizer of f , and let xt be the updated point at step t using
gradient descent with a constant step size 1

β , i.e. using the update rule xt+1 = xt − 1
β∇ f (xt).

Then:
‖xt+1 − x∗‖2 6 exp

(
− t

κ

)
‖x1 − x∗‖2.

Proof. Consider the quadratic function

f (x) =
1
2

xT Ax− bTx + c ,

where A is a symmetric n× n matrix, b ∈ Rn and c ∈ R. A gradient descent update
with step size ηt takes the form:

xt+1 = xt − ηt∇ f (xt) = xt − ηt (Axt − b)

Subtracting x∗ from both sides of this equation and using the property that Ax∗ − b =
∇ f (x∗) = 0:

xt+1 − x∗ = (xt − ηt (Axt − b))− (x∗ − ηt (Ax∗ − b))
= (I − ηt A)(xt − x∗)

=
t

∏
k=1

(I − ηk A)(x1 − x∗) .

Thus,

‖xt+1 − x∗‖2 6

∥∥∥∥∥ t

∏
k=1

(I − ηt A)

∥∥∥∥∥
2

‖x1 − x∗‖2 6

(
t

∏
k=1
‖I − ηk A‖2

)
‖x1 − x∗‖2 .

Set ηk =
1
β for all k. Note that α

β I � 1
β A � I, so:∥∥∥∥I − 1

β
A
∥∥∥∥

2
= 1− α

β
= 1− 1

κ
.

It follows that

‖xt+1 − x∗‖2 6
(

1− 1
κ

)t

‖x1 − x∗‖2 6 exp
(
− t

κ

)
‖x1 − x∗‖2 . �

6.3 Connection to polynomial approximation

In the previous section, we proved an upper bound on the convergence rate. In this
section, we would like to improve on this. To see how, think about whether there was
any point in the argument above where we were careless? One obvious candidate is
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that our choice of step size, ηk =
1
β , was chosen rather arbitrarily. In fact, by choosing

the sequence ηk we can select any degree-t polynomial of the form:

p(A) =
t

∏
k=1

(I − ηk A) .

Note that:
‖p(A)‖ = max

x∈λ(A)
|p(x)|

where p(A) is a matrix polynomial, and p(t) is the corresponding scalar polynomial.
In general, we may not know the set of eigenvalues λ(A), but we do know that all
eigenvalues are in the range [α, β]. Relaxing the upper bound, we get

‖p(A)‖ 6 max
x∈[α,β]

|p(x)| .

We can see now that we want a polynomial p(a) that takes on small values in [α, β],
while satisfying the additional normalization constraint p(0) = 1.

6.3.1 A simple polynomial solution

A simple solution has a uniform step size ηt =
2

α+β . Note that

max
x∈[α,β]

∣∣∣∣1− 2
α + β

x
∣∣∣∣ = β− α

α + β
6

β− α

β
= 1− 1

κ
,

recovering the same convergence rate we proved previously. The resulting polynomial
pt(x) is plotted in Figure 1 for degrees t = 3 and t = 6, with α = 1 and β = 10. Note
that doubling the degree from three to six only halves the maximum absolute value the
polynomial attains in [α, β], explaining why convergence is so slow.

6.4 Chebyshev polynomials

Fortunately, we can do better than this by speeding up gradient descent using Cheby-
shev polynomials. We will use Chebyshev polynomials of the first kind, defined by the
recurrence relation:

T0(a) = 1, T1(a) = a
Tk(a) = 2aTk−1(a)− Tk−2(a), for k > 2 .

Figure 2 plots the first few Chebyshev polynomials.
Why Chebyshev polynomials? Suitably rescaled, they minimize the absolute value

in a desired interval [α, β] while satisfying the normalization constraint of having value 1
at the origin.
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Figure 1: Naive Polynomial

Recall that the eigenvalues of the matrix we consider are in the interval [α, β]. We
need to rescale the Chebyshev polynomials so that they’re supported on this interval
and still attain value 1 at the origin. This is accomplished by the polynomial

Pk(a) =
Tk

(
α+β−2a

β−α

)
Tk

(
α+β
β−α

) .

We see on figure 3 that doubling the degree has a much more dramatic effect on the
magnitude of the polynomial in the interval [α, β].

Let’s compare on figure 4 this beautiful Chebyshev polynomial side by side with
the naive polynomial we saw earlier. The Chebyshev polynomial does much better: at
around 0.3 for degree 3 (needed degree 6 with naive polynomial), and below 0.1 for
degree 6.

6.4.1 Accelerated gradient descent

The Chebyshev polynomial leads to an accelerated version of gradient descent. Before
we describe the iterative process, let’s first see what error bound comes out of the
Chebyshev polynomial.

So, just how large is the polynomial in the interval [α, β]? First, note that the
maximum value is attained at α. Plugging this into the definition of the rescaled
Chebyshev polynomial, we get the upper bound for any a ∈ [α, β],
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Figure 2: Chebychev polynomials of varying degrees.

|Pk(a)| 6 |Pk(α)| =
|Tk(1)|
|TK

(
β+α
β−α

)
|
6

∣∣∣∣∣TK

(
β + α

β− α

)−1
∣∣∣∣∣ .

Recalling the condition number κ = β/α, we have

β + α

β− α
=

κ + 1
κ − 1

.

Typically κ is large, so this is 1 + ε, ε ≈ 2
κ . Therefore, we have

|Pk(a)| 6 |Tk(1 + ε)−1|.

To upper bound |Pk|, we need to lower bound |Tk(1 + ε)|.
Fact: for a > 1, Tk(a) = cosh (k · arccosh(a)) where:

cosh(a) =
ea + e−a

2
, arccosh(a) = ln

(
x +

√
x2 − 1

)
.

Now, letting φ = arccosh(1 + ε):

eφ = 1 + ε +
√

2ε + ε2 > 1 +
√

ε.
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Figure 3: Rescaled Chebyshev

So, we can lower bound |Tk(1 + ε)|:

|Tk(1 + ε)| = cosh (karccosh(1 + ε))

= cosh(kφ)

=
(eφ)k + (e−φ)k

2

>
(1 +

√
ε)k

2
.

Then, the reciprocal is what we needed to upper bound the error of our algorithm,
so we have:

|Pk(a)| 6 |Tk(1 + ε)−1| 6 2(1 +
√

ε)−k.

Thus, this establishes that the Chebyshev polynomial achieves the error bound:

‖xt+1 − x∗‖ 6 2(1 +
√

ε)−t ‖x0 − x∗‖

≈ 2

(
1 +

√
2
κ

)−t

‖x0 − x∗‖

6 2 exp

(
−t

√
2
κ

)
‖x0 − x∗‖ .

This means that for large κ, we get quadratic savings in the degree we need before
the error drops off exponentially. Figure 5 shows the different rates of convergence, we
clearly see that the
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Figure 4: Rescaled Chebyshev VS Naive Polynomial

6.4.2 The Chebyshev recurrence relation

Due to the recursive definition of the Chebyshev polynomial, we directly get an iterative
algorithm out of it. Transferring the recursive definition to our rescaled Chebyshev
polynomial, we have:

PK+1(a) = (ηka + γk)Pk(a) + µkPk−1(a).

where we can work out the coefficients ηk, γk, µk from the recurrence definition.
Since Pk(0) = 1, we must have γk + µk = 1. This leads to a simple update rule for our
iterates:

xk+1 = (ηk A + γk)xk + (1− γK)xk−1 − ηkb
= (ηk A + (1− µk))xk + µkxk−1 − ηkb
= xk − ηk(Axk − b) + µk(xk − xk−1).

We see that the update rule above is actually very similar to plain gradient descent
except for the additional term µk(xk− xk−1). This term can be interpreted as a momentum
term, pushing the algorithm in the direction of where it was headed before. In the
next lecture, we’ll dig deeper into momentum and see how to generalize the result for
quadratics to general convex functions.
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Figure 5: Convergence for naive polynomial and Chebyshev
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