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5 Conditional gradient method

In this lecture we discuss the conditional gradient method, also known as the Frank-
Wolfe (FW) algorithm [FW56]. The motivation for this approach is that the projection
step in projected gradient descent can be computationally inefficient in certain scenarios.
The conditional gradient method provides an appealing alternative.

5.1 The algorithm

Conditional gradient side steps the projection step using a clever idea.
We start from some point x0 ∈ Ω. Then, for time steps t = 1 to T, where T is our

final time step, we set
xt+1 = xt + ηt(x̄t − xt)

where
x̄t = arg min

x∈Ω
f (xt) +∇ f (xt)

>(x− xt).

This expression simplifies to:

x̄t = arg min
x∈Ω
∇ f (xt)

>x

Note that we need step size ηt ∈ [0, 1] to guarantee xt+1 ∈ Ω.
So, rather than taking a gradient step and projecting onto the constraint set. We opti-

mize a liner function (defined by the gradient) inside the constraint set as summarized
in Figure 1.
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Starting from x0 ∈ Ω, repeat:

x̄t = arg min
x∈Ω
∇ f (xt)

>x (linear optimization)

xt+1 = xt + ηt(x̄t − xt) (update step)

Figure 1: Conditional gradient

5.2 Conditional gradient convergence analysis

As it turns out, conditional gradient enjoys a convergence guarantee similar to the one
we saw for projected gradient descent.

Theorem 5.1 (Convergence Analysis). Assume we have a function f : Ω→ R that is convex,
β-smooth and attains its global minimum at a point x∗ ∈ Ω. Then, Frank-Wolfe achieves

f (xt)− f (x∗) 6
2βD2

t + 2

with step size

ηt =
2

t + 2
.

Here, D is the diameter of Ω, defined as D = maxx−y∈Ω ‖x− y‖.

Note that we can trade our assumption of the existence of x∗ for a dependence on L,
the Lipschitz constant, in our bound.

Proof of Theorem 5.1. By smoothness and convexity, we have

f (y) 6 f (x) +∇ f (x)>(x− xt) +
β

2
‖x− y‖2

Letting y = xt+1 and x = xt, combined with the progress rule of conditional gradient
descent, the above equation yields:

f (xt+1) 6 f (xt) + ηt∇ f (xt)
>(x̄t − xt) +

η2
t β

2
‖x̄t − xt‖2

We now recall the definition of D from Theorem 5.1 and observe that ‖x̄t − xt‖2 6 D2.
Thus, we rewrite the inequality:

f (xt+1) 6 f (xt) + ηt∇ f (xt)
>(x∗t − xt) +

η2
t βD2

2

Because of convexity, we also have that

∇ f (xt)
>(x∗ − xt) 6 f (x∗)− f (xt)
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Thus,

f (xt+1)− f (x∗) 6 (1− ηt)( f (xt)− f (x∗)) +
η2

t βD2

2
(1)

We use induction in order to prove f (xt)− f (x∗) 6 2βD2

t+2 based on Equation 1 above.

Base case t = 0. Since f (xt+1)− f (x∗) 6 (1− ηt)( f (xt)− f (x∗)) + η2
t βD2

2 , when t = 0,
we have ηt =

2
0+2 = 1. Hence,

f (x1)− f (x∗) 6 (1− ηt)( f (xt)− f (x∗)) +
β

2
‖x1 − x∗‖2

= (1− 1)( f (xt)− f (x∗)) +
β

2
‖x1 − x∗‖2

6
βD2

2

6
2βD2

3

Thus, the induction hypothesis holds for our base case.

Inductive step. Proceeding by induction, we assume that f (xt)− f (x∗) 6 2βD2

t+2 holds
for all integers up to t and we show the claim for t + 1.

By Equation 1,

f (xt+1)− f (x∗) 6
(

1− 2
t + 2

)
( f (xt)− f (x∗)) +

4
2(t + 2)

βD2

6
(

1− 2
t + 2

)
2βD2

t + 2
+

4
2(t + 2)

βD2

= βD2
(

2t
(t + 2)2 +

2
(t + 2)2

)
= 2βD2 · t + 1

(t + 2)2

= 2βD2 · t + 1
t + 2

· 1
t + 2

6 2βD2 · t + 2
t + 3

· 1
t + 2

= 2βD2 1
t + 3

Thus, the inequality also holds for the t + 1 case.
�
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5.3 Application to nuclear norm optimization problems

The code for the following examples can be found here.

5.3.1 Nuclear norm projection

The nuclear norm (sometimes called Schatten 1-norm or trace norm) of a matrix A, denoted
‖A‖∗, is defined as the sum of its singular values

‖A‖∗ = ∑
i

σi(A) .

The norm can be computed from the singular value decomposition of A. We denote the
unit ball of the nuclear norm by

Bm×n
∗ = {A ∈ Rm×n | ‖A‖∗ 6 1}.

How can we project a matrix A onto B∗? Formally, we want to solve

min
X∈B∗

‖A− X‖2
F

Due to the rotational invariance of the Frobenius norm, the solution is obtained by
projecting the singular values onto the unit simplex. This operation corresponds to
shifting all singular values by the same parameter θ and clipping values at 0 so that
the sum of the shifted and clipped values is equal to 1. This algorithm can be found in
[DSSSC08].

5.3.2 Low-rank matrix completion

Suppose we have a partially observable matrix Y, of which the missing entries are filled
with 0 and we would like to find its completion form projected on a nuclear norm ball.
Formally we have the objective function

min
X∈B∗

1
2
‖Y− PO(X)‖2

F

where PO is a linear projection onto a subset of coordinates of X specified by O. In this
example PO(X) will generate a matrix with corresponding observable entries as in Y
while other entries being 0. We can have PO(X) = X �O where O is a matrix with
binary entries. Calculating the gradient of this function, we have

∇ f (X) = Y− X�O .

We can use projected gradient descent to solve this problem but it is more efficient to
use Frank-Wolfe algorithm. We need to solve the linear optimization oracle

X̄t ∈ argmin
X∈B∗

∇ f (Xt)
>X
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To simplify this problem, we need a simple fact that follows from the singular value
decomposition.

Fact 5.2. The unit ball of the nuclear norm is the convex hull of rank-1 matrices

conv{uv>|‖u‖ = ‖v‖ = 1, u ∈ Rm, v ∈ Rn} = {X ∈ Rm×n | ‖X‖∗ = 1} .

From this fact it follows that the minimum of ∇ f (Xt)>X is attained at a rank-1
matrix uv> for unit vectors u and v. Equivalently, we can maximize −∇ f (Xt)>uv>

over all unit vectors u and v. Put Z = −∇ f (XT) and note that

Z>uv> = tr(Z>uv>) = tr(u>Zv) = u>Zv .

Another way to see this is to note that the dual norm of a nuclear norm is operator
norm,

‖Z‖ = max
‖X‖∗61

〈Z, X〉 .

Either way, we see that to run Frank-Wolfe over the nuclear norm ball we only need
a way to compute the top left and singular vectors of a matrix. One way of doing this is
using the classical power method described in Figure 2.

• Pick a random unit vector x1 and let y1 = A>x/‖A>x‖.

• From k = 1 to k = T − 1 :

– Put xk+1 = Ayk
‖Ayk‖

– Put yk+1 =
A>xk+1
‖A>xk+1‖

• Return xT and yT as approximate top left and right singular vectors.

Figure 2: Power method
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