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3 Strong convexity

This lecture introduces the notion of strong convexity and combines it with smoothness
to develop the concept of condition number. While smoothness gave as an upper bound
on the second-order term in Taylor’s approximation, strong convexity will give us a
lower bound. Taking together, these two assumptions are quite powerful as they lead
to a much faster convergence rate of the form exp(−Ω(t)). In words, gradient descent
on smooth and strongly convex functions decreases the error multiplicatively by some
factor strictly less than 1 in each iteration.

The technical part follows the corresponding chapter in Bubeck’s text [Bub15].

3.1 Reminders

Recall that we had (at least) two definitions apiece for convexity and smoothness: a gen-
eral definition for all functions and a more compact definition for (twice-)differentiable
functions.

A function f is convex if, for each input, there exists a globally valid linear lower
bound on the function: f (y) > f (x) + g>(x)(y− x). For differentiable functions, the
role of g is played by the gradient.

A function f is β-smooth if, for each input, there exists a globally valid quadratic
upper bound on the function, with (finite) quadratic parameter β: f (y) 6 f (x) +
g>(x)(y − x) + β

2 ‖x− y‖2. More poetically, a smooth, convex function is “trapped
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between a parabola and a line”. Since β is covariant with affine transformations, e.g.
changes of units of measurement, we will frequently refer to a β-smooth function as
simply smooth.

For twice-differentiable functions, these properties admit simple conditions for
smoothness in terms of the Hessian, or matrix of second partial derivatives. A D2

function f is convex if ∇2 f (x) � 0 and it is β-smooth if ∇2 f (x) � βI.
We furthermore defined the notion of L-Lipschitzness. A function f is L-Lipschitz

if the amount that it “stretches” its inputs is bounded by L: | f (x)− f (y)| 6 L ‖x− y‖.
Note that for differentiable functions, β-smoothness is equivalent to β-Lipschitzness of
the gradient.

3.2 Strong convexity

With these three concepts, we were able to prove two error decay rates for gradient
descent (and its projective, stochastic, and subgradient flavors). However, these rates
were substantially slower than what’s observed in certain settings in practice.

Noting the asymmetry between our linear lower bound (from convexity) and our
quadratic upper bound (from smoothness) we introduce a new, more restricted function
class by upgrading our lower bound to second order.

Definition 3.1 (Strong convexity). A function f : Ω → R is α-strongly convex if, for all
x, y ∈ Ω, the following inequality holds for some α > 0:

f (y) > f (x) + g(x)>(y− x) +
α

2
‖x− y‖2

As with smoothness, we will often shorten “α-strongly convex” to “strongly con-
vex”. A strongly convex, smooth function is one that can be “squeezed between two
parabolas”. If β-smoothness is a good thing, then α-convexity guarantees we don’t have
too much of a good thing.

A twice differentiable function is α-strongly convex if ∇2 f (x) � αI.
Once again, note that the parameter α changes under affine transformations. Con-

veniently enough, for α-strongly convex, β-smooth functions, we can define a basis-
independent quantity called the condition number.

Definition 3.2 (Condition Number). An α-strongly convex, β-smooth function f has
condition number β

α .

For a positive-definite quadratic function f , this definition of the condition number
corresponds with the perhaps more familiar definition of the condition number of the
matrix defining the quadratic.
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A look back and ahead. The following table summarizes the results from the previous
lecture and the results to be obtained in this lecture. In both, the value ε is the difference
between f at some value x′ computed from the outputs of gradient descent and f
calculated at an optimizer x∗.

Convex Strongly convex
Lipschitz ε 6 O(1/

√
t) ε 6 O(1/t)

Smooth ε 6 O(1/t) ε 6 e−Ω(t)

Table 1: Bounds on error ε as a function of number of steps taken t for gradient descent applied
to various classes of functions.

Since a rate that is exponential in terms of the magnitude of the error is linear in
terms of the bit precision, this rate of convergence is termed linear. We now move to
prove these rates.

3.3 Convergence rate strongly convex functions

For no good reason we begin with a convergence bound for strongly convex Lipschitz
functions, in which we obtain a O(1/t) rate of convergence.

Theorem 3.3. Assume f : Ω → R is α-strongly convex and L-Lipschitz. Let x∗ be an
optimizer of f , and let xs be the updated point at step s using projected gradient descent. Let the
max number of iterations be t with an adaptive step size ηs =

2
α(s+1) , then

f

(
t

∑
s=1

2s
t(t + 1)

xs

)
− f (x∗) 6

2L2

α(t + 1)

The theorem implies the convergence rate of projected gradient descent for α-strongly
convex functions is similar to that of β-smooth functions with a bound on error ε 6
O(1/t). In order to prove Theorem 3.3, we need the following proposition.

Proposition 3.4 (Jensen’s inequality). Assume f : Ω→ R is a convex function and x1, x2, ...,
, xn, ∑n

i=1 γixi/ ∑n
i=1 γi ∈ Ω with weights γi > 0, then

f
(

∑n
i=1 γixi

∑n
i=1 γi

)
6

∑n
i=1 γi f (xi)

∑n
i=1 γi

For a graphical “proof” follow this link.

Proof of Theorem 3.3. Recall the two steps update rule of projected gradient descent

ys+1 = xs − ηs∇ f (xs)

xs+1 = ΠΩ(ys+1)
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First, the proof begins by exploring an upper bound of difference between function
values f (xs) and f (x∗).

f (xs)− f (x∗) 6 ∇ f (xs)
>(xs − x∗)− α

2
‖xs − x∗‖2

=
1
ηs
(xs − ys+1)

>(xs − x∗)− α

2
‖xs − x∗‖2 (by update rule)

=
1

2ηs
(‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2)− α

2
‖xs − x∗‖2

(by "Fundamental Theorem of Optimization")

=
1

2ηs
(‖xs − x∗‖2 − ‖ys+1 − x∗‖2) +

ηs

2
‖∇ f (xs)‖2 − α

2
‖xs − x∗‖2

(by update rule)

6
1

2ηs
(‖xs − x∗‖2 − ‖xs+1 − x∗‖2) +

ηs

2
‖∇ f (xs)‖2 − α

2
‖xs − x∗‖2

(by Lemma ??)

6 (
1

2ηs
− α

2
)‖xs − x∗‖2 − 1

2ηs
‖xs+1 − x∗‖2 +

ηsL2

2
(by Lipschitzness)

By multiplying s on both sides and substituting the step size ηs by 2
α(s+1) , we get

s( f (xs)− f (x∗)) 6
L2

α
+

α

4
(s(s− 1)‖xs − x∗‖2 − s(s + 1)‖xs+1 − x∗‖2)

Finally, we can find the upper bound of the function value shown in Theorem 3.3
obtained using t steps projected gradient descent

f

(
t

∑
s=1

2s
t(t + 1)

xs

)
6

t

∑
s=1

2s
t(t + 1)

f (xs) (by Proposition 3.4)

6
2

t(t + 1)

t

∑
s=1

(
s f (x∗) +

L2

α
+

α

4
(s(s− 1)‖xs − x∗‖2 − s(s + 1)‖xs+1 − x∗‖2)

)
=

2
t(t + 1)

t

∑
s=1

s f (x∗) +
2L2

α(t + 1)
− α

2
‖xt+1 − x∗‖2

(by telescoping sum)

6 f (x∗) +
2L2

α(t + 1)

This concludes that solving an optimization problem with a strongly convex objective
function with projected gradient descent has a convergence rate is of the order 1

t+1 ,
which is faster compared to the case purely with Lipschitzness. �
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3.4 Convergence rate for smooth and strongly convex functions

Theorem 3.5. Assume f : Rn → R is α-strongly convex and β-smooth. Let x∗ be an
optimizer of f , and let xt be the updated point at step t using gradient descent with a constant
step size 1

β , i.e. using the update rule xt+1 = xt − 1
β∇ f (xt). Then,

‖xt+1 − x∗‖2 6 exp (−t
α

β
)‖x1 − x∗‖2

In order to prove Theorem 3.5, we require use of the following lemma.

Lemma 3.6. Assume f as in Theorem 3.5. Then ∀x, y ∈ Rn and an update of the form
x+ = x− 1

β∇ f (x),

f (x+)− f (y) 6 ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

Proof of Lemma 3.6.

f (x+)− f (x) + f (x)− f (y) 6 ∇ f (x)>(x+ − x) +
β

2
‖x+ − x‖2 (Smoothness)

+∇ f (x)>(x− y)− α

2
‖x− y‖2 (Strong convexity)

= ∇ f (x)>(x+ − y) +
1

2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

(Definition of x+)

= ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)‖2 − α

2
‖x− y‖2

(Definition of x+)

�

Now with Lemma 3.6 we are able to prove Theorem 3.5.

Proof of Theorem 3.5.

‖xt+1 − x∗‖2 = ‖xt −
1
β
∇ f (xt)− x∗‖2

= ‖xt − x∗‖2 − 2
β
∇ f (xt)

>(xt − x∗) +
1
β2‖∇ f (xt)‖2

6
(
1− α

β

)
‖xt − x∗‖2 (Use of Lemma 3.6 with y = x∗, x = xt)

6
(
1− α

β

)t‖x1 − x∗‖2

6 exp
(
−t

α

β

)
‖x1 − x∗‖2 �
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We can also prove the same result for the constrained case using projected gradient
descent.

Theorem 3.7. Assume f : Ω → R is α-strongly convex and β-smooth. Let x∗ be an
optimizer of f , and let xt be the updated point at step t using projected gradient descent with a
constant step size 1

β , i.e. using the update rule xt+1 = ΠΩ(xt − 1
β∇ f (xt)) where ΠΩ is the

projection operator. Then,

‖xt+1 − x∗‖2 6 exp (−t
α

β
)‖x1 − x∗‖2

As in Theorem 3.5, we will require the use of the following Lemma in order to prove
Theorem 3.7.

Lemma 3.8. Assume f as in Theorem 3.5. Then ∀x, y ∈ Ω, define x+ ∈ Ω as x+ =
ΠΩ(x− 1

β∇ f (x)) and the function g : Ω→ R as g(x) = β(x− x+). Then

f (x+)− f (y) 6 g(x)>(x− y)− 1
2β
‖g(x)‖2 − α

2
‖x− y‖2

Proof of Lemma 3.8. The following is given by the Projection Lemma, for all x, x+, y
defined as in Theorem 3.7.

∇ f (x)>(x+ − y) 6 g(x)>(x+ − y)

Therefore, following the form of the proof of Lemma 3.6,

f (x+)− f (x) + f (x)− f (y) 6 ∇ f (x)>(x+ − y) +
1

2β
‖∇g(x)‖2 − α

2
‖x− y‖2

6 ∇g(x)>(x+ − y) +
1

2β
‖∇g(x)‖2 − α

2
‖x− y‖2

= ∇g(x)>(x− y)− 1
2β
‖∇g(x)‖2 − α

2
‖x− y‖2 �

The proof of Theorem 3.7 is exactly as in Theorem 3.5 after substituting the appropri-
ate projected gradient descent update in place of the standard gradient descent update,
with Lemma 3.8 used in place of Lemma 3.6.
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