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2 Gradient method

In this lecture we encounter the fundamentally important gradient method and a few
ways to analyze its convergence behavior. The goal here is to solve a problem of the
form

min
x∈Ω

f (x) .

To solve this problem, we will need to make some assumptions on both the objective func-
tion f : Ω→ R and the constraint set Ω. In case Ω = Rn, we speak of an unconstrained
optimization problem.

The proofs closely follow the corresponding chapter in Bubeck’s text [Bub15].

2.1 Gradient descent

For a differentiable function f , the basic gradient method starting from an initial point x1
is defined by the iterative update rule

xt+1 = xt − ηt∇ f (xt) , t = 1, 2, . . .

where the scalar ηt is the so-called step size, sometimes called learning rate, that may vary
with t. There are numerous ways of choosing step sizes that have a significant effect on
the performance of gradient descent. What we will see in this lecture are several choices
of step sizes that ensure the convergence of gradient descent by virtue of a theorem.
These step sizes are not necessarily ideal for practical applications.
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2.1.1 Projections

In cases where the constraint set Ω is not all of Rn, the gradient update can take us
outside the domain Ω. How can we ensure that xt+1 ∈ Ω? One natural approach is to
“project” each iterate back onto the domain Ω. As it turns out, this won’t really make
our analysis more difficult and so we include from the get-go.

Definition 2.1 (Projection). The projection of a point x onto a set Ω is defined as

ΠΩ(x) = arg min
y∈Ω
‖x− y‖2 .

Example 2.2. A projection onto the Euclidean ball B2 is just normalization:

ΠB2(x) =
x
‖x‖

A crucial property of projections is that when x ∈ Ω, we have for any y (possibly
outside Ω):

‖ΠΩ(y)− x‖2 6 ‖y− x‖2

That is, the projection of y onto a convex set containing x is closer to x. In fact, a stronger
claim is true that follows from the Pythagorean theorem.

Lemma 2.3.
‖ΠΩ(y)− x‖2 6 ‖y− x‖2 − ‖y−ΠΩ(y)‖2

So, now we can modify our original procedure as displayed in Figure 1.

Starting from x1 ∈ Ω, repeat:

yt+1 = xt − η∇ f (xt) (gradient step)
xt+1 = ΠΩ(yt+1) (projection)

Figure 1: Projected gradient descent

And we are guaranteed that xt+1 ∈ Ω. Note that computing the projection may be
computationally the hardest part of the problem. However, there are convex sets for
which we know explicitly how to compute the projection (see Example 2.2). We will see
several other non-trivial examples in later lectures.

2.2 Lipschitz functions

The first assumption that leads to a convergence analysis is that the gradients of the
objective function aren’t too big over the domain. This turns out to follow from a natural
Lipschitz continuity assumption.
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Definition 2.4 (L-Lipschitz). A function f : Ω → R is L-Lipschitz if for every x, y ∈ Ω,
we have

| f (x)− f (y)| 6 L‖x− y‖

Fact 2.5. If the function f is L-Lipschitz, differentiable, and convex, then

‖∇ f (x)‖ 6 L .

We can now prove our first convergence rate for gradient descent.

Theorem 2.6. Assume that function f is convex, differentiable, and L-Lipschitz over the convex
domain Ω. Let R be the upper bound on the distance ‖x1 − x∗‖2 from the initial point x1 to an
optimal point x∗ ∈ arg minx∈Ω f (x). Let x1, . . . , xt be the sequence of iterates computed by t
steps of projected gradient descent with constant step size η = R

L
√

t
. Then,

f

(
1
t

t

∑
s=1

xs

)
− f (x∗) 6

RL√
t

.

This means that the difference between the functional value of the average point
during the optimization process from the optimal value is bounded above by a constant
proportional to 1√

t
.

Before proving the theorem, recall the “Fundamental Theorem of Optimization”,
which is that an inner product can be written as a sum of norms:

u>v =
1
2
(‖u‖2 + ‖v‖2−‖u− v‖2) (1)

This property follows from the more familiar identity ‖u− v‖2 = ‖u‖2 + ‖v‖2−2u>v.

Proof of Theorem 2.6. The proof begins by first bounding the difference in function values
f (xs)− f (x∗).

f (xs)− f (x∗) 6 ∇ f (xs)
>(xs − x∗) (by convexity)

=
1
η
(xs − ys+1)

>(xs − x∗) (by the update rule)

=
1

2η

(
‖xs − x∗‖2 + ‖xs − ys+1‖2 − ‖ys+1 − x∗‖2

)
(by Equation 1)

=
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+

η

2
‖∇ f (xs)‖2

(by the update rule)

6
1

2η

(
‖xs − x∗‖2 − ‖ys+1 − x∗‖2

)
+

ηL2

2
(Lipschitz condition)

6
1

2η

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
+

ηL2

2
(Lemma 2.3)
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Now, sum these differences from s = 1 to s = t:

t

∑
s=1

f (xs)− f (x∗) 6
1

2η

t

∑
s=1

(
‖xs − x∗‖2 − ‖xs+1 − x∗‖2

)
+

ηL2t
2

=
1

2η

(
‖x1 − x∗‖2 − ‖xt − x∗‖2

)
+

ηL2t
2

(telescoping sum)

6
1

2η
‖x1 − x∗‖2 +

ηL2t
2

(since ‖xt − x∗‖ > 0)

6
R2

2η
+

ηL2t
2

(since ‖x1 − x∗‖ 6 R)

Finally,

f

(
1
t

t

∑
s=1

xs

)
− f (x∗) 6

1
t

t

∑
s=1

f (xs)− f (x∗) (by convexity)

6
R2

2ηt
+

ηL2

2
(inequality above)

=
RL√

t
(for η = R/L

√
t.)

�

2.3 Smooth functions

The next property we’ll encounter is called smoothness. The main point about smoothness
is that it allows us to control the second-order term in the Taylor approximation. This
often leads to stronger convergence guarantees at the expense of a relatively strong
assumption.

Definition 2.7 (Smoothness). A continuously differentiable function f is β smooth if the
gradient gradient map ∇ f : Rn → Rn is β-Lipschitz, i.e,

‖∇ f (x)−∇ f (y)‖ 6 β‖x− y‖ .

We will need a couple of technical lemmas before we can analyze gradient descent
for smooth functions. It’s safe to skip the proof of these technical lemmas on a first read.

Lemma 2.8. Let f be a β-smooth function on Rn. Then, for every x, y ∈ Rn,∣∣∣ f (y)− f (x)−∇ f (x)>(y− x)
∣∣∣ 6 β

2
‖y− x‖2 .
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Proof. Express f (x)− f (y) as an integral, then apply Cauchy-Schwarz and β-smoothness
as follows:

| f (y)− f (x)−∇ f (x)>(y− x)| =

∣∣∣∣∣∣
1∫

0

∇ f (x + t(y− x))>(y− x)dt−∇ f (x)>(y− x)

∣∣∣∣∣∣
6

1∫
0

‖∇ f (x + t(y− x))−∇ f (x)‖ · ‖y− x‖dt

6

1∫
0

βt‖y− x‖2dt

=
β

2
‖y− x‖2 �

The significance of this lemma is that we can choose y = x− 1
β∇ f (x) and get that

f (y)− f (x) 6 − 1
2β
‖∇ f (x)‖2 .

This means that the gradient update decreases the function value by an amount propor-
tional to the squared norm of the gradient.

We also need the following lemma.

Lemma 2.9. Let f be a β-smooth convex function, then for every x, y ∈ Rn, we have

f (x)− f (y) 6 ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)−∇ f (y)‖2 .

Proof. Let z = y− 1
β (∇ f (y)−∇ f (x)). Then,

f (x)− f (y) = f (x)− f (z) + f (z)− f (y)

6 ∇ f (x)>(x− z) +∇ f (y)>(z− y) +
β

2
‖z− y‖2

= ∇ f (x)>(x− y) + (∇ f (x)−∇ f (y))>(y− z) +
1

2β
‖∇ f (x)−∇ f (y)‖2

= ∇ f (x)>(x− y)− 1
2β
‖∇ f (x)−∇ f (y)‖2

Here, the inequality follows from convexity and smoothness. �

We will show that gradient descent with the update rule

xt+1 = xt − η∇ f (xt)

attains a faster rate of convergence under the smoothness condition.
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Theorem 2.10. Let f be convex and β-smooth on Rn then gradient descent with η = 1
β satisfies

f (xt)− f (x∗) 6
2β‖x1 − x∗‖2

t− 1

To prove this we will need the following two lemmas.

Proof. By the update rule and Lemma 2.8 we have

f (xs+1)− f (xs) 6 −
1

2β
‖∇ f (xs)‖2

In particular, denoting δs = f (xs)− f (x∗) this shows

δs+1 6 δs −
1

2β
‖∇ f (xs)‖2

One also has by convexity

δs 6 ∇ f (x)s)>(xs − x∗) 6 ‖xs − x∗‖ · ‖∇ f (xs)‖

We will prove that ‖xs − x∗‖ is decreasing with s, which with the two above displays
will imply

δs+1 6 δs −
1

2β‖x1 − x∗‖2 δ2
s

We solve the recurrence as follows. Let w = 1
2β‖x1−x∗‖2 , then

wδ2
s + δs+1 6 δs ⇐⇒ w

δs

δs+1
+

1
δs
6

1
δs+1

=⇒ 1
δs+1

− 1
δs
> w =⇒ 1

δt
> w(t− 1)

To finish the proof it remains to show that ‖xs − x∗‖ is decreasing with s. Using
Lemma 2.9, we get

(∇ f (x)−∇ f (y))>(x− y) >
1
β
‖∇ f (x)−∇ f (y)‖2 .

We use this and the fact that ∇ f (x∗) = 0, to show

‖xs+1 − x∗‖2 = ‖xs −
1
β
∇ f (xs)− x∗‖2

= ‖xs − x∗‖2 − 2
β
∇ f (xs)

>(xs − x∗) +
1
β2‖∇ f (xs)‖2

6 ‖xs − x∗‖2 − 1
β2‖∇ f (xs)‖2

6 ‖xs − x∗‖2 .

�
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