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1 Convexity

This lecture provides the most important facts about convex sets and convex functions
that we’ll heavily make use of. When f is sufficiently smooth, these are often simple
consequences of Taylor’s theorem.

1.1 Convex sets

Definition 1.1 (Convex set). A set K ⊆ Rn is convex if it the line segment between any
two points in K is also contained in K. Formally, for all x, y ∈ K and all scalars γ ∈ [0, 1]
we have γx + (1− γ)y ∈ K.

Theorem 1.2 (Separation Theorem). Let C, K ⊆ Rn be convex sets with empty intersection
C ∩ K = ∅. Then there exists a point a ∈ Rn and a number b ∈ R such that

1. for all x ∈ C, we have 〈a, x〉 > b.

2. for all x ∈ K, we have 〈a, x〉 6 b.

If C and K are closed and at least one of them is bounded, then we can replace the inequalities by
strict inequalities.

The case we’re most concerned with is when both sets are compact (i.e., closed and
bounded). We highlight its proof here.
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Proof of Theorem 1.2 for compact sets. In this case, the Cartesian product C × K is also
compact. Therefore, the distance function ‖x − y‖ attains its minimum over C × K.
Taking p, q to be two points that achieve the minimum. A separating hyperplane is given
by the hyperplane perpendicular to q− p that passes through the midpoint between
p and q. That is, a = q− p and b = (〈a, q〉 − 〈a, p〉)/2. For the sake of contradiction,
suppose there is a point r on this hyperplane contained in one of the two sets, say, C.
Then the line segment from p to r is also contained in C by convexity. We can then
find a point along the line segment that is close to q than p is, thus contradicting our
assumption. �

1.1.1 Notable convex sets

• Linear spaces {x ∈ Rn | Ax = 0} and halfspaces {x ∈ Rn | 〈a, x〉 > 0}

• Affine transformations of convex sets. If K ⊆ Rn is convex, so is {Ax + b | x ∈ K}
for any A ∈ Rm×n and b ∈ Rm. In particular, affine subspaces and affine halfspaces
are convex.

• Intersections of convex sets. In fact, every convex set is equivalent to the inter-
section of all affine halfspaces that contain it (a consequence of the separating
hyperplane theorem).

• The cone of positive semidefinite matrices, denotes, Sn
+ = {A ∈ Rn×n | A � 0}.

Here we write A � 0 to indicate that x>Ax > 0 for all x ∈ Rn. The fact that Sn
+

is convex can be verified directly from the definition, but it also follows from
what we already knew. Indeed, denoting by Sn = {A ∈ Rn×n | A> = A} the set
of all n× n symmetric matrices, we can write Sn

+ as an (infinite) intersection of
halfspaces Sn

+ =
⋂

x∈Rn\{0}{A ∈ Sn | x>Ax > 0}.

• See Boyd-Vandenberghe for lots of other examples.

1.2 Convex functions

Definition 1.3 (Convex function). A function f : Ω→ R is convex if for all x, y ∈ Ω and
all scalars γ ∈ [0, 1] we have f (γx + (1− γ)y) 6 γ f (x) + (1− γ) f (y).

Jensen (1905) showed that for continuous functions, convexity follows from the
“midpoint” condition that for all x, y ∈ Ω,

f
(

x + y
2

)
6

f (x) + f (y)
2

.

This result sometimes simplifies the proof that a function is convex in cases where we
already know that it’s continuous.
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4.0 Epigraph of a convex function

Definition 1.4. The epigraph of a function f : Ω→ R is defined as

epi( f ) = {(x, t) | f (x) 6 t} .

Fact 1.5. A function is convex if and only if its epigraph is convex.

Convex functions enjoy the property that local minima are also global minima.
Indeed, suppose that x ∈ Ω is a local minimum of f : Ω→ R meaning that any point in
a neighborhood around x has larger function value. Now, for every y ∈ Ω, we can find
a small enough γ such that

f (x) 6 f ((1− γ)x + γy) 6 (1− γ) f (x) + γ f (y) .

Therefore, f (x) 6 f (y) and so x must be a global minimum.

1.2.1 First-order characterization

It is helpful to relate convexity to Taylor’s theorem, which we recall now. We define
the gradient of a differentiable function f : Ω → R at x ∈ Ω as the vector of partial
derivatives

∇ f (x) =
(

∂ f
∂xi

)n

i=1
.

We note the following simple fact that relates linear forms of the gradient to a one-
dimensional derivative evaluated at 0. It’s a consequence of the multivariate chain
rule.

Fact 1.6. Assume f : Ω→ R is differentiable and let x, y ∈ Ω. Then,

∇ f (x)>y =
∂ f (x + γy)

∂γ

∣∣∣∣
γ=0

.
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First-order Taylor approximation

Figure 1: Taylor approximation of f (x) = x2 at 0.5.

Taylor’s theorem implies the following statement.

Proposition 1.7. Assume f : Ω → R is continuously differentiable along the line segment
between two points x and y. Then,

f (y) = f (x) +∇ f (x)>(y− x) +
∫ 1

0
(1− γ)

∂2 f (x + γ(y− x))
∂γ2 dγ

Proof. Apply a second order Taylor’s expansion to g(γ) = f (x + γ(y− x)) and apply
Fact 1.6 to the first-order term. �

Among differentiable functions, convexity is equivalent to the property that the
first-order Taylor approximation provides a global lower bound on the function.

Proposition 1.8. Assume f : Ω→ R is differentiable. Then, f is convex if and only if for all
x, y ∈ Ω we have

f (y) > f (x) +∇ f (x)>(y− x) . (1)

Proof. First, suppose f is convex, then by definition

f (y) >
f ((1− γ)x + γy)− (1− γ) f (x)

γ

> f (x) +
f (x + γ(y− x))− f (x)

γ

→ f (x) +∇ f (x)>(y− x) as γ→ 0 (by Fact 1.6.)
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On the other hand, fix two points x, y ∈ Ω and γ ∈ [0, 1]. Putting z = γx + (1− γ)y we
get from applying Equation 1 twice,

f (x) > f (z) +∇ f (z)>(x− z) and f (y) > f (z) +∇ f (z)>(y− z)

Adding these inequalities scaled by γ and (1− γ), respectively, we get γ f (x) + (1−
γ) f (y) > f (z), which establishes convexity. �

A direct consequence of Proposition 1.8 is that if ∇ f (x) = 0 vanishes at a point x,
then x must be a global minimizer of f .

Remark 1.9 (Subgradients). Of course, not all convex functions are differentiable. The absolute
value f (x) = |x|, for example, is convex but not differentiable at 0. Nonetheless, for every x, we
can find a vector g such that

f (y) > f (x) + g>(y− x) .

Such a vector is called a subgradient of f at x. The existence of subgradients is often sufficient
for optimization.

1.2.2 Second-order characterization

We define the Hessian matrix of f : Ω → R at a point x ∈ Ω as the matrix of second
order partial derivatives:

∇2 f (x) =

(
∂2 f

∂xi∂xj

)
i,j∈[n]

.

Schwarz’s theorem implies that the Hessian at a point x is symmetric provided that f
has continuous second partial derivatives in an open set around x.

In analogy with Fact 1.6, we can relate quadratic forms in the Hessian matrix to
one-dimensional derivatives using the chain rule.

Fact 1.10. Assume that f : Ω → R is twice differentiable along the line segment from x to y.
Then,

y>∇2 f (x + γy)y =
∂2 f (x + γy)

∂γ2 .

Proposition 1.11. If f is twice continuously differentiable on its domain Ω, then f is convex if
and only if ∇2 f (x) � 0 for all x ∈ Ω.

Proof. Suppose f is convex and our goal is to show that the Hessian is positive semidef-
inite. Let y = x + αu for some arbitrary vector u and scalar α. Proposition 1.8 shows

f (y)− f (x)−∇ f (x)>(y− x) > 0
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Hence, by Proposition 1.7,

0 6
∫ 1

0
(1− γ)

∂2 f (x + γ(y− x))
∂γ2 dγ

= (1− γ)
∂2 f (x + γ(y− x))

∂γ2 for some γ ∈ (0, 1) (by the mean value theorem)

= (1− γ)(y− x)>∇2 f (x + γ(y− x))(y− x) . (by Fact 1.10)

Plugging in our choice of y, this shows 0 6 u>∇2 f (x + αγu)u. Letting α tend to zero
establishes that∇2 f (x) � 0. (Note that γ generally depends on α but is always bounded
by 1.)

Now, suppose the Hessian is positive semidefinite everywhere in Ω and our goal is
to show that the function f is convex. Using the same derivation as above, we can see
that the second-order error term in Taylor’s theorem must be non-negative. Hence, the
first-order approximation is a global lower bound and so the function f is convex by
Proposition 1.8. �

1.3 Convex optimization

Much of this course will be about different ways of minimizing a convex function f : Ω→
R over a convex domain Ω :

min
x∈Ω

f (x)

Convex optimization is not necessarily easy! For starters, convex sets do not necessarily
enjoy compact descriptions. When solving computational problems involving convex
sets, we need to worry about how to represent the convex set we’re dealing with. Rather
than asking for an explicit description of the set, we can instead require a computational
abstraction that highlights essential operations that we can carry out. The Separation
Theorem motivates an important computational abstraction called separation oracle.

Definition 1.12. A separation oracle for a convex set K is a device, which given any point
x 6∈ K returns a hyperplane separating x from K.

Another computational abstraction is a first-order oracle that given a point x ∈ Ω
returns the gradient ∇ f (x). Similarly, a second-order oracle returns ∇2 f (x). A function
value oracle or zeroth-order oracle only returns f (x). First-order methods are algorithms
that make do with a first-order oracle. Analogously, we can define zeroth-order method,
and second-order method.

1.3.1 What is efficient?

Classical complexity theory typically quantifies the resource consumption (primarily
running time or memory) of an algorithm in terms of the bit complexity of the input.

6



We say things like “we can multiply two n-bit numbers in time O(n2) using long
multiplication method.”

This computational approach can be cumbersome in convex optimization and most
textbooks shy away from it. Instead, it’s customary in optimization to quantify the cost
of the algorithm in terms of more abstract resources, like, how often it accesses one of
the oracles we mentioned. Counting oracle can give us a rough sense of how well we
expect a method to work.

The definition of “efficient” is not completely cut and dry in optimization. Typically,
our goal is to show that an algorithm finds a solution x with

f (x) 6 min
x∈Ω

f (x) + ε

for some additive error ε > 0. The cost of the algorithm will depend on the target
error. Highly practical algorithms often have a polynomial dependence on ε, such as
O(1/ε) or even O(1/ε2). Other algorithms achieve O(log(1/ε)) steps in theory, but are
prohibitive in their actual computational cost. Technically, if we think of the parameter ε

as being part of the input, it takes only O(log(1/ε)) bits to describe the error parameter.
Therefore, an algorithm that depends more than logarithmically on 1/ε may not be
polynomial time algorithm in its input size.

In this course, we will make an attempt to highlight both the theoretical performance
and practical appeal of an algorithm. Moreover, we will discuss other performance
criteria such as robustness to noise. How well an algorithm performs is rarely decided
by a single criterion, and usually depends on the application at hand.
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